In the present work, we report the enhanced dielectric, ferroelectric, energy storage and energy harvesting performance of a citrate-gel synthesized Bi1−xBaxFeO3 (x = 0, 0.05, 0.10) incorporating poly(vinylidene fluoride) (PVDF) matrix.
Along with enhanced dielectric permittivity and suppressed dielectric loss, PVDF-ZnO@ZnSnO3 films showed simultaneous enhancement in electrical energy storage density and storage efficiency compared to PVDF-ZnSnO3 composites.
Hydroxylation of a BiFeO3 filler improved the dielectric permittivity, energy storage density and mechanical energy harvesting performance along with reduced dielectric loss of its PVDF based composites compared to that of an untreated BiFeO3 filler.
The present work highlights an attempt of fabricating a nanocomposite by addition of multi-walled carbon nanotubes (MWCNT) as third phase into flexible ZnO-Poly(vinylidene fluoride) (ZnO-PVDF) composites. MWCNT played very important...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.