Vitiligo is a chronic asymptomatic disorder affecting melanocytes from the basal layer of the epidermis which leads to a patchy loss of skin color. Even though it is one of the neglected disease conditions, people suffering from vitiligo are more prone to psychological disorders. As of now, various studies have been done in order to project auto-immune implications as the root cause. To understand the complexity of vitiligo, we propose the Vitiligo Information Resource (VIRdb) that integrates both the drug-target and systems approach to produce a comprehensive repository entirely devoted to vitiligo, along with curated information at both protein level and gene level along with potential therapeutics leads. These 25,041 natural compounds are curated from Natural Product Activity and Species Source Database. VIRdb is an attempt to accelerate the drug discovery process and laboratory trials for vitiligo through the computationally derived potential drugs. It is an exhaustive resource consisting of 129 differentially expressed genes, which are validated through gene ontology and pathway enrichment analysis. We also report 22 genes through enrichment analysis which are involved in the regulation of epithelial cell differentiation. At the protein level, 40 curated protein target molecules along with their natural hits that are derived through virtual screening. We also demonstrate the utility of the VIRdb by exploring the Protein–Protein Interaction Network and Gene–Gene Interaction Network of the target proteins and differentially expressed genes. For maintaining the quality and standard of the data in the VIRdb, the gold standard in bioinformatics toolkits like Cytoscape, Schrödinger’s GLIDE, along with the server installation of MATLAB, are used for generating results. VIRdb can be accessed through “http://www.vitiligoinfores.com/”.
Early flowering, maturity, and plant height are important traits for linseed to fit in rice fallows, for rainfed agriculture, and for economically viable cultivation. Here, Multi-Locus Genome-Wide Association Study (ML-GWAS) was undertaken in an association mapping panel of 131 accessions, genotyped using 68,925 SNPs identified by genotyping by sequencing approach. Phenotypic evaluation data of five environments comprising 3 years and two locations were used. GWAS was performed for three flowering time traits including days to 5%, 50%, and 95% flowering, days to maturity, and plant height by employing five ML-GWAS methods: FASTmrEMMA, FASTmrMLM, ISIS EM-BLASSO, mrMLM, and pLARmEB. A total of 335 unique QTNs have been identified for five traits across five environments. 109 QTNs were stable as observed in ≥2 methods and/or environments, explaining up to 36.6% phenotypic variance. For three flowering time traits, days to maturity, and plant height, 53, 30, and 27 stable QTNs, respectively, were identified. Candidate genes having roles in flower, pollen, embryo, seed and fruit development, and xylem/phloem histogenesis have been identified. Gene expression of candidate genes for flowering and plant height were studied using transcriptome of an early maturing variety Sharda (IC0523807). The present study unravels QTNs/candidate genes underlying complex flowering, days to maturity, and plant height traits in linseed.
Stroke is a major cause of mortality and long-term disability in the world. Predictive outcome models in stroke are valuable for personalized treatment, rehabilitation planning and in controlled clinical trials. We design a new multi-class classification model to predict outcome in the short-term, the putative therapeutic window for several treatments. Our model addresses the challenges of class imbalance, where the training data is dominated by samples of a single class, and highly correlated predictor and outcome variables, which makes learning the effects of treatments on the outcome difficult. Empirically our model outperforms the best-known previous predictive models and can infer the most effective treatments in improving outcome that have been independently validated in clinical studies.
Nearly a fourth of all enzymatic activities is attributable to oxidoreductases, and the redox reactions supported by this vast catalytic repertoire sustain cellular metabolism. In many biological processes, reduction depends on hydride transfer from either reduced nicotinamide adenine dinucleotide (NADH) or its phosphorylated derivative (NADPH). Despite longstanding efforts to regenerate NADPH by various methods and harness it to support chemoenzymatic synthesis strategies, the lack of product purity has been a major deterrent. Here, we demonstrate that a nanostructured heterolayer Ni–Cu2O–Cu cathode formed by a photoelectrochemical process has unexpected efficiency in direct electrochemical regeneration of NADPH from NADP+. Remarkably, two-thirds of NADP+ was converted to NADPH with no measurable production of the inactive (NADP)2 dimer and at the lowest reported overpotential [− 0.75 V versus Ag/AgCl (3 M NaCl) reference]. Sputtering of nickel on the copper-oxide electrode nucleated an unexpected surface morphology that was critical for high product selectivity. Our results should motivate design of integrated electrolyzer platforms that deploy this heterogeneous catalyst for direct electrochemical regeneration of NADH/NADPH, which is central to design of next-generation biofuel fermentation strategies, biological solar converters, energy-storage devices, and artificial photosynthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.