Hydrogen is considered as an ideal and sustainable energy carrier because of its high energy density and carbon-free combustion. Electrochemical water splitting is the only solution for uninterrupted, scalable, and sustainable production of hydrogen without carbon emission. However, a large-scale hydrogen production through electrochemical water splitting depends on the availability of earth-abundant electrocatalysts and a suitable electrolyte medium. In this article, we demonstrate that hydrogen evolution reaction (HER) performance of electrocatalytic materials can be controlled by their surface functionalization and selection of a suitable electrolyte solution. Here, we report syntheses of few-layered MoS2 nanosheets, NiO nanoparticles (NPs), and multiwalled carbon nanotubes (MWCNTs) using scalable production methods from earth-abundant materials. Magnetic measurements of as-produced electrocatalyst materials demonstrate that MoS2 nanoflakes are diamagnetic, whereas surface-functionalized MoS2 and its composite with carbon nanotubes have strong ferromagnetism. The HER performance of the few-layered pristine MoS2 nanoflakes, MoS2/NiO NPs, and MoS2/NiO NPs/MWCNT nanocomposite electrocatalysts are studied in acidic and alkaline media. For bare MoS2, the values of overpotential (η10) in alkaline and acidic media are 0.45 and 0.54 V, respectively. Similarly, the values of current density at 0.5 V overpotential are 27 and 6.2 mA/cm2 in alkaline and acidic media, respectively. The surface functionalization acts adversely in the both alkaline and acidic media. MoS2 nanosheets functionalized with NiO NPs also demonstrated excellent performance for oxygen evolution reaction with anodic current of ~60 mA/cm2 and Tafel slope of 78 mVdec−1 in alkaline medium.
Plasmonic nanoparticles (NPs) such as silver and gold have fascinating optical properties due to their enhanced optical sensitivity at a wavelength corresponding to their surface plasmon resonance (SPR) absorption. Present work deals with the fabrication of silver nanoparticles decorated cotton (SNDC) fibers as a cheap and efficient point of contact disinfectant. SNDC fibers were fabricated by a simple microwave assisted route. The microwave power and irradiation time were controlled to optimize size and density of silver nanoparticles (SNPs) on textile fibers. As prepared cotton fabric was characterized for ATR-FTIR, UV-VIS diffuse reflectance, SEM and TEM investigations. Size of SNPs as well as total density of silver atoms on fabric gets increased with the increase of microwave power from 100 W to 600 W. The antibacterial efficacy of SNPs extracted from SNDC fibers was found to be more effective against Gram-negative bacteria than Gram-positive bacteria with MIC 38.5 ± 0.93 μg/mL against Salmonella typhimurium MTCC-98 and 125 ± 2.12 μg/mL against Staphylococcus aureus MTCC-737, a linear correlation coefficient with R2 ranging from ∼0.928–0.935 was also observed. About >50% death cells were observed through Propidium Iodide (PI) internalization after treatment of SNPs extracted from SNDC fibers with concentration 31.25 μg/mL. Generation of ROS and free radical has also been observed which leads to cell death. Excellent Escherichia coli deactivation efficacy suggested that SNDC fibers could be used as potentially safe disinfectants for cleaning of medical equipment, hand, wound, water and preservation of food and beverages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.