In this paper, a generalization of the group mutual exclusion problem based upon the concept of neighborhood has been proposed and named as group local mutual exclusion (GLME). The neighborhood is defined based upon the location of shared resources and no synchronization is required between nodes in two different neighborhoods. A token-based solution of the GLME has also been proposed. The algorithm satisfies safety, starvation freedom, and concurrent occupancy properties. The proof of correctness has also been included in the present paper. To the best of our knowledge, it is the first token-based algorithm to solve GLME problem in MANETs.
The efficient and safe management of air conditioner (AC), Piped Natural Gas (PNG) and water pipelines in large buildings is a major challenge for the safety of these buildings. In recent years, Linear Wireless Sensor Networks (LWSN) are being used extensively for monitoring of long natural gas, water, and oil pipelines. LWSNs can also be used for efficient and safe management of AC, PNG and water pipelines in large buildings. In this paper, a scheme for optimal placement of sensors and base stations in a linear fashion to monitor the various pipelines used in large buildings has been proposed. The proposed scheme utilizes the Lion Optimization Algorithm (LOA) and has been compared with three strategies, namely Ant Colony Optimization (ACO), Genetic Algorithm (GA) and Greedy Approach with respect to throughput, lifetime and end-to-end delay. The simulation results show that the proposed scheme exhibits better performance in comparison to the other three considered techniques for all the three parameters. The most striking feature of the proposed approach is that optimization is more effective when the length of the pipeline is more as far as end-to-end delay is concerned. The lifetime of the network is significantly improved using the proposed approach, especially when the length of the pipeline is of medium size, which makes the proposed scheme suitable for energy efficient buildings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.