Cell identification and enumeration are essential procedures within clinical and research laboratories. For over 150 years, quantitative investigation of body fluids such as counts of various blood cells has been an important tool for diagnostic analysis. With the current evolution of point-of-care diagnostics and precision medicine, cheap and precise cell counting technologies are in demand. This article reviews the timeline and recent notable advancements in cell counting that have occurred as a result of improvements in sensing including optical and electrical technology, enhancements in image processing capabilities, and contributions of micro and nanotechnologies. Cell enumeration methods have evolved from the use of manual counting using a hemocytometer to automated cell counters capable of providing reliable counts with high precision and throughput. These developments have been enabled by the use of precision engineering, micro and nanotechnology approaches, automation and multivariate data analysis. Commercially available automated cell counters can be broadly classified into three categories based on the principle of detection namely, electrical impedance, optical analysis and image analysis. These technologies have many common scientific uses, such as hematological analysis, urine analysis and bacterial enumeration. In addition to commercially available technologies, future technological trends using lab-on-a-chip devices have been discussed in detail. Lab-on-a-chip platforms utilize the existing three detection technologies with innovative design changes utilizing advanced nano/microfabrication to produce customized devices suited to specific applications.
We introduce a novel instrument controlled valving scheme for centrifugal platforms which is based upon xurography. In a first approach, which is akin to previously presented event-triggered flow control, the valves are composed of a pneumatic chamber sealed by a dissolvable film (DF) and by a pierceable membrane. Liquid is initially prevented from wetting the DF by the counter pressure of a trapped gas. Via a channel, this pocket is pneumatically connected to a vent, sealed by the pierceable membrane, located on the top surface of the disc. By scouring the top surface of the disc, along a pre-defined track by a robotic knife-cutter, the trapped gas is released and so the liquid can wet and disintegrate the DF. In order to automate assay protocols without the need to integrate DFs, we extend this xurography-based flow control concept by selective venting of chambers subjected to pneumatic over-pressure or vacuum suction. Unlike most instrument controlled flow-control mechanisms, in this approach to valve actuation can occur during disc rotation. To demonstrate the potential of this flow control approach, we designed a disc architecture to automate the liquid handling as the backbone of a biplex liver assay panel. We demonstrate valve actuation during rotation, using the robotic arm, using this disc with visualisation via dyed water. We then demonstrate the biplex liver assay, using calibration reagent, by stopping the disc and manually piercing the membrane to actuate the same valves.
We have developed a rapid technique for characterizing the biomechanical properties of dendritic cells using dielectrophoretic forces. It is widely recognized that maturing of dendritic cells modulates their stiffness and migration capabilities, which results in T-cell activation triggering the adaptive immune response. Therefore it is important to develop techniques for mechanophenotyping of immature and mature dendritic cells. The technique reported here utilizes nonuniform electric fields to exert a substantial force on the cells to induce cellular elongation for optical measurements. In addition, a large array of interdigitated electrodes allows multiple cells to be stretched simultaneously. Our results indicate a direct correlation between F-actin activity and deformability observed in dendritic cells, determined through mean fluorescence signal intensity of phalloidin.
This paper reports radially inbound pumping by the eventtriggered addition of water to on-board stored baking powder in combination with valving by an immiscible, high-specific weight liquid on a centrifugal microfluidic platform. This technology allows making efficient use of precious real estate near the center of rotation by enabling the placement of early sample preparation steps as well as reagent reservoirs at the spacious, high-field region on the perimeter of the disc-shaped rotor. This way the number of process steps and assays that can be integrated on these of this "Lab-on-a-Disc" (LoaD) cartridge can be significantly enhanced while maintaining minimum requirements on the intrinsically simple, spindle-motor based instrumentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.