Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the traveling salesman problem. The genetic algorithm depends on selection criteria, crossover, and mutation operators. To tackle the traveling salesman problem using genetic algorithms, there are various representations such as binary, path, adjacency, ordinal, and matrix representations. In this article, we propose a new crossover operator for traveling salesman problem to minimize the total distance. This approach has been linked with path representation, which is the most natural way to represent a legal tour. Computational results are also reported with some traditional path representation methods like partially mapped and order crossovers along with new cycle crossover operator for some benchmark TSPLIB instances and found improvements.
As an intelligent search optimization technique, genetic algorithm (GA) is an important approach for non-deterministic polynomial (NP-hard) and complex nature optimization problems. GA has some internal weakness such as premature convergence and low computation efficiency, etc. Improving the performance of GA is a vital topic for complex nature optimization problems. The selection operator is a crucial strategy in GA, because it has a vital role in exploring the new areas of the search space and converges the algorithm, as well. The fitness proportional selection scheme has essence exploitation and the linear rank selection is influenced by exploration. In this article, we proposed a new selection scheme which is the optimal combination of exploration and exploitation. This eliminates the fitness scaling issue and adjusts the selection pressure throughout the selection phase. The χ 2 goodness-of-fit test is used to measure the average accuracy, i.e., mean difference between the actual and expected number of offspring. A comparison of the performance of the proposed scheme along with some conventional selection procedures was made using TSPLIB instances. The application of this new operator gives much more effective results regarding the average and standard deviation values. In addition, a two-tailed t test is established and its values showed the significantly improved performance by the proposed scheme. Thus, the new operator is suitable and comparable to established selection for the problems related to traveling salesman problem using GA.
Current analytical approaches in computational social science can be characterized by four dominant paradigms: text analysis (information extraction and classification), social network analysis (graph theory), social complexity analysis (complex systems science), and social simulations (cellular automata and agent-based modeling). However, when it comes to organizational and societal units of analysis, there exists no approach to conceptualize, model, analyze, explain, and predict social media interactions as individuals' associations with ideas, values, identities, and so on. To address this limitation, based on the sociology of associations and the mathematics of set theory, this paper presents a new approach to big data analytics called social set analysis. Social set analysis consists of a generative framework for the philosophies of computational social science, theory of social data, conceptual and formal models of social data, and an analytical framework for combining big social data sets with organizational and societal data sets. Three empirical studies of big social data are presented to illustrate and demonstrate social set analysis in terms of fuzzy set-theoretical sentiment analysis, crisp set-theoretical interaction analysis, and eventstudies-oriented set-theoretical visualizations. Implications for big data analytics, current limitations of the set-theoretical approach, and future directions are outlined.INDEX TERMS Big social data, formal models, social set analysis, big data visual analytics, new computational models for big social data.
Formal methods, models and tools for social big data analytics are largely limited to graph theoretical approaches such as social network analysis (SNA) informed by relational sociology. There are no other unified modeling approaches to social big data that integrate the conceptual, formal and software realms. In this paper, we first present and discuss a theory and conceptual model of social data. Second, we outline a formal model based on set theory and discuss the semantics of the formal model with a real-world social data example from Facebook. Third, we briefly present and discuss the Social Data Analytics Tool (SODATO) that realizes the conceptual model in software and provisions social data analysis based on the conceptual and formal models. Fourth and last, based on the formal model and sentiment analysis of text, we present a method for profiling of artifacts and actors and apply this technique to the data analysis of big social data collected from Facebook page of the fast fashion company, H&M.
Selection criteria, crossover and mutation are three main operators of genetic algorithm's performance. A lot of work has been done on these operators, but the crossover operator has a vital role in the operation of genetic algorithms. In literature, multiple crossover operators already exist with varying impact on the final results. In this article, we propose two new crossover operators for the genetic algorithms. One of them is based on the natural concept of crossover i.e. the upcoming offspring takes one bit from a parent and next from other parent and continuously takes bits till last one. The other proposed scheme is the extension of two-point crossover with the concept of multiplication rule. These operators are applied for eight benchmark problems in parallel with some traditional crossover operators. Empirical studies show a remarkable performance of the proposed crossover operators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.