The trend of cloud databases is leaning towards Not Only SQL (NoSQL) databases as they provide better support for scalable storage and quick retrieval of exponentially voluminous data. One of the more prominent types of NoSQL databases is document-based storage, which is being increasingly used in the dynamic cloud paradigm. However, there are inherent security issues in cloud, including remote data residency along with the non-existent control of owners over their own data. In addition to that, the inherent security features of most document-based NoSQL databases lack granular access control and robust confidentiality mechanisms. There is also a distinct lack of a comprehensive solution that effectively caters to all the security requirements of a document-oriented database in cloud. In order to overcome these issues, we propose a database security-as-a-service (DB-SECaaS) system over document-oriented database hosted in cloud, which provides authentication, fine-grained authorization, and encryption of the database objects, while ensuring that access to the data is granted only to authorized users on a need-to-know basis. The paper shows that the DB-SECaaS system strongly enhances the security of documentoriented databases on cloud, and it is thus expected to facilitate the industry to reap the benefits of NoSQL without worrying over security issues. In order to certify the abovementioned security enhancements, provided by DB-SECaaS, the paper also provides a formal analysis of DB-SECaaS using the Scyther model checker. As a proof of concept, the core functionalities of the protocol, i.e., authorization, authentication, and encryption, are formally modeled in Scyther to formally verify that the proposed framework mitigates privacy and security concerns.
As accessibility of networked devices becomes more and more ubiquitous, groundbreaking applications of the Internet of Things (IoT) find their place in many aspects of our society. The exploitation of these devices is the main reason for the cyberattacks in IoT networks. Security design is still an open problem and a crucial step in making IoT applications successful. In dicey environments, such as e-health, smart grid, and smart cities, real-time commands must reach the end devices in the scale of milliseconds. Traditional public-key cryptosystem, albeit necessary in the context of general Internet security, falls short in establishing new session keys in the scale of milliseconds for critical messages. In this paper, a systematic perspective for securing IoT communication, specifically satisfying the real-time constraint against certain adversaries in realistic settings. First, at the network layer, we propose a secret random route computation scheme using the software-defined network (SDN) based on a capability scheme using the network actions. The computed routes are random in the eyes of the eavesdropper. Second, at the application layer, the source breaks command messages into secret shares and sends them through the network to the destination. Only the legitimate destination device can reconstruct the command. The secret sharing scheme is efficient compared to PKI and comes with information-theoretic security against adversaries. Our proof formalizes the notion of security of the proposed scheme, and our simulations validate our design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.