Rice (Oryza Sativa) is an important source of food for the people of our country, even though of world also .It is also considered as the staple food of our country and we know agriculture is the main source country's economy, hence the crop of Rice plays a vital role over it. For increasing the growth and production of rice crop, groundbreaking technique for the detection of any type of disease occurring in rice can be detected and categorization of rice crop diseases has been proposed in this paper. In this research paper, we perform comparison between two classifiers namely MDC and Bayes' classifiers Survey over different digital image processing techniques has been done for the detection of disease in rice crops. The proposed technique involves the samples of 200 digital images of diseased rice leaf images of five different types of rice crop diseases. The overall accuracy that we achieved by using Bayes' Classifiers and MDC are 69.358 percent and 81.06 percent respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.