DC distribution of PV systems has spread back especially in the residential sector as a variety of electronic appliances became locally available in the market. The compatibility of household appliances with the best voltage-level in a DC environment is the field that still in the research phase and has not yet made a practically extensive appearance. This paper mainly discusses this issue by providing a review of the concerning research efforts, identifying the gaps in the existing knowledge. The work explains the electrical diagrams of the recently produced appliances, classifying them to get an understanding of how each one consumes energy. It includes exploiting the recent dependence of the commercial appliances on power electronics to improve the efficiency of the existing DC distribution systems by extrapolating new architectures. The proposed topology has a DC distribution environment with two levels of voltage for all appliances. Appliances performances have been evaluated by calculating the energy transfer efficiency. The outcomes of this work can help in designing more efficient DC power distribution networks with minimal energy converters and establishing standardizations for DC microgrids.
In the industrial application, the induction motors (IMs) and the digital signal processing (ZQ28335) combination are very important in the scientific field. Two thirds of consumption of electricity is due to motor driven equipment. The direct torque control (DTC) is the standard of the industry and it has fast response control system applications. The drawback of DTC is the flux and torque ripples in the measurements. The scalar control can be considered as a solution to this drawback but with poor response. Torque and speed of IM are controlling individually, the variable speed drive (VSDs) is used. This occurs with variation of the voltage and frequency of IM supply. To decrease the levels of flux and torque ripples, 3-level inverters represent an attractive technique. The compromise of a huge flux and torque at the beginning level and low values at steady state of operation is crucial to ensure better stability with feedback linearization of the nonlinear behavior. In this paper, VSD with DTC IM with multilevel inverter with the newest version of ZQ28335 digital signal processor (DSP) is proposed. Emulation and the results of experiment through DSP ZQ28335 make certain correct dynamic response to the operations of torque and flux.
Speed control of Dc motors is an important issue also shorter settling time is desired . In this work at first a parallel PID compensator which adjusted by Ziegler – Nichols is designed but Ziegler – Nichols don't apply directly for all structures of PID controller ,drive equations to applied Ziegler - Nichols for this configuration of PID compensator . The controller design process requirements are discussed by programming . Then the comparison between the PID configurations shows that the PID controller significantly reduced the overshoot , settling time and has the best performance encountering with system uncertainties . According to the matlab programming version 7.10 results , the D*PI controller has better performance than the PID configuration
Proportional integral derivative (PID) control is the most commonly used control algorithm in the industry today. PID controller popularity can be attributed to the controller’s effectiveness in a wide range of operation conditions, its functional simplicity, and the ease with which engineers can implement it using current computer technology . In this paper,the Dc servomotor model is chosen according to his good electrical and mechanical performances more than other Dc motor models , discuss the novel method for tuning PID controller and comparison with Ziegler - Nichols method from through parameters of transient response of any system which uses PID compensator
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.