Studies of gene expression abnormalities in psychiatric or neurological disorders often involve the use of postmortem brain tissue. Compared with single-cell organisms or clonal cell lines, the biological environment and medical history of human subjects cannot be controlled, and are often difficult to document fully. The chance of finding significant and replicable changes depends on the nature and magnitude of the observed variations among the studied subjects. During an analysis of gene expression changes in mood disorders, we observed a remarkable degree of natural variation among 120 samples, which represented three brain regions in 40 subjects. Most of such diversity can be accounted for by two distinct expression patterns, which in turn are strongly correlated with tissue pH. Individuals who suffered prolonged agonal states, such as with respiratory arrest, multi-organ failure or coma, tended to have lower pH in the brain; whereas those who experienced brief deaths, associated with accidents, cardiac events or asphyxia, generally had normal pH. The lower pH samples exhibited a systematic decrease in expression of genes involved in energy metabolism and proteolytic activities, and a consistent increase of genes encoding stress-response proteins and transcription factors. This functional specificity of changed genes suggests that the difference is not merely due to random RNA degradation in low pH samples; rather it reflects a broad and actively coordinated biological response in living cells. These findings shed light on critical molecular mechanisms that are engaged during different forms of terminal stress, and may suggest clinical targets of protection or restoration.
Vibrio cholerae is an autochthonous member of diverse aquatic ecosystems around the globe. Collectively, the genomes of environmental V. cholerae strains comprise a large repository of encoded functions which can be acquired by individual V. cholerae lineages through uptake and recombination. To characterize the genomic diversity of environmental V. cholerae, we used comparative genome hybridization to study 41 environmental strains isolated from diverse habitats along the central California coast, a region free of endemic cholera. These data were used to classify genes of the epidemic V. cholerae O1 sequenced strain N16961 as conserved, variably present, or absent from the isolates. For the most part, absent genes were restricted to large mobile elements and have known functions in pathogenesis. Conversely, genes present in some, but not all, California isolates were in smaller contiguous clusters and were less likely to be near genes with functions in DNA mobility. Two such clusters of variable genes encoding different selectable metabolic phenotypes (mannose and diglucosamine utilization) were transformed into the genomes of environmental isolates by chitin-dependent competence, indicating that this mechanism of general genetic exchange is conserved among V. cholerae. The transformed DNA had an average size of 22.7 kbp, demonstrating that natural competence can mediate the movement of large chromosome fragments. Thus, whether variable genes arise through the acquisition of new sequences by horizontal gene transfer or by the loss of preexisting DNA though deletion, natural transformation provides a mechanism by which V. cholerae clones can gain access to the V. cholerae pan-genome.
Alternative splicing of RNA is an underexplored area of transcriptional response. We expect that early changes in alternatively spliced genes may be important for responses to cardiac injury. Hypoxia inducible factor 1 (HIF1) is a key transcription factor that rapidly responds to loss of oxygen through alteration of metabolism and angiogenesis. The goal of this study was to investigate the transcriptional response after myocardial infarction (MI) and to identify novel, hypoxia-driven changes, including alternative splicing. After ligation of the left anterior descending artery in mice, we observed an abrupt loss of cardiac contractility and upregulation of hypoxic signaling. We then performed RNA sequencing on ischemic heart tissue 1 and 3 days after infarct to assess early transcriptional changes and identified 89 transcripts with altered splicing. Of particular interest was the switch in Pkm isoform expression (pyruvate kinase, muscle). The usually predominant Pkm1 isoform was less abundant in ischemic hearts, while Pkm2 and associated splicing factors (hnRNPA1, hnRNPA2B1, Ptbp1) rapidly increased. Despite increased Pkm2 expression, total pyruvate kinase activity remained reduced in ischemic myocardial tissue. We also demonstrated HIF1 binding to PKM by chromatin immunoprecipitation, indicating a direct role for HIF1 in mediating this isoform switch. Our study provides a new, detailed characterization of the early transcriptome after MI. From this analysis, we identified an HIF1-mediated alternative splicing event in the PKM gene. Pkm1 and Pkm2 play distinct roles in glycolytic metabolism and the upregulation of Pkm2 is likely to have important consequences for ATP synthesis in infarcted cardiac muscle.
Ultrasound Targeted Microbubble Destruction (UTMD) was used to direct the delivery of plasmid and transposase-based vectors encoding human factor IX (hFIX) to the livers of Hemophilia B (FIX −/−) mice. The DNA vectors were incorporated into cationic lipid microbubbles, injected intravenously, and transfected into hepatocytes by acoustic cavitation of the bubbles as they transited the liver. Ultrasound parameters were identified that produced transfection of hepatocytes in vivo without substantial damage or bleeding in the livers of the FIX deficient mice. These mice were treated with a conventional expression plasmid, or one containing a piggyBac transposon construct, and hFIX levels in the plasma and liver were evaluated at multiple time-points after UTMD. We detected hFIX in the plasma by western blotting from mice treated with either plasmid during the 12 days after UTMD, and in the hepatocytes of treated livers by immunofluorescence. Reductions in clotting time and improvements in the percentage of FIX activity were observed for both plasmids, conventional (4.15 ± 1.98 %), and transposon-based (2.70 ± .75 %), 4 to 5 days after UTMD compared to untreated FIX (−/−) control mice (.92 ± .78 %) (p=0.001 and p=0.012, respectively). Reduced clotting times persisted for both plasmids 12 days after treatment (reflecting percentage FIX activity of 3.12 ± 1.56 %, p=0.02 and 3.08 ± .10 %, p=0.001, respectively). Clotting times from an additional set of mice treated with pmGENIE3-hFIX were evaluated for long-term effects and demonstrated a persistent reduction in average clotting time (116 ± 9 seconds) 160 days after a single treatment. These data suggest that UTMD could be a minimally invasive, non-viral approach to enhance hepatic FIX expression in patients with hemophilia.
The principal regulator of cellular response to low oxygen is hypoxia-inducible factor (HIF)-1, which is stabilized in several forms of heart failure. Our laboratory developed a mouse strain in which a stable form of HIF-1 can be inducibly expressed in cardiomyocytes. Strikingly, these mice show a rapid decrease in cardiac contractility and a rapid loss of SERCA2 protein, which is also seen in heart failure. Interestingly, while the SERCA2 transcript decreased, it did not fully account for the observed decrease in protein. We therefore investigated whether HIF-1-regulated microRNA could impair SERCA translation. Multiple screening analyses identified the microRNA miR-29c to be substantially upregulated upon HIF-1 induction and to have complementarity to SERCA, and therefore be a potential regulator of SERCA2 expression in hypoxia. Subsequent evaluation confirmed that miR-29c reduced SERCA2 expression and Ca2+ reuptake. Additionally, administration of an antagonist sequence (antimir) improved cardiac contractility and SERCA2 expression in HIF transgenic mice. To extend the significance of these findings, we examined miR-29c expression in physiological hypoxia. Surprisingly, miR-29c decreased in these settings. We also treated mice with antimir before infarction to see if further suppression of miR-29c could improve cardiac function. While no improvement in contractility or SERCA2 was observed, reduction of heart size after infarction indicated that the antimir could modulate cardiac physiology. These results demonstrate that while a HIF-1-regulated microRNA, miR-29c, can reduce SERCA2 expression and contractility, additional factors in the ischemic milieu may limit these effects. Efforts to develop miRNA-based therapies will need to explore and account for these additional countervailing effects. NEW & NOTEWORTHY Our study demonstrated hypoxia-inducible factor-1-dependent upregulation of miR-29c, which, in turn, inhibited SERCA2 expression and reduced cardiac contractility in a transgenic overexpression system. Interestingly, these results were not recapitulated in a murine myocardial infarction model. These results underscore the complexity of the pathological environment and highlight the need for therapeutic target validation in physiologically relevant models. Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/hif1-regulates-mir-29c-and-serca2/ .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.