Sp1-like proteins are characterized by three conserved C-terminal zinc finger motifs that bind GC-rich sequences found in promoters of numerous genes essential for mammalian cell homeostasis. These proteins behave as transcriptional activators or repressors. Although significant information has been reported on the molecular mechanisms by which Sp1-like activators function, relatively little is known about mechanisms for repressor proteins. Here we report the functional characterization of BTEB3, a ubiquitously expressed Sp1-like transcriptional repressor. GAL4 assays show that the N terminus of BTEB3 contains regions that can act as direct repressor domains. Immunoprecipitation assays reveal that BTEB3 interacts with the co-repressor mSin3A and the histone deacetylase protein HDAC-1. Gel shift assays demonstrate that BTEB3 specifically binds the BTE site, a well characterized GC-rich DNA element, with an affinity similar to that of Sp1. Reporter and gel shift assays in Chinese hamster ovary cells show that BTEB3 can also mediate repression by competing with Sp1 for BTE binding. Thus, the characterization of this protein expands the repertoire of BTEB-like members of the Sp1 family involved in transcriptional repression. Furthermore, our results suggest a mechanism of repression for BTEB3 involving direct repression by the N terminus via interaction with mSin3A and HDAC-1 and competition with Sp1 via the DNA-binding domain.Sp1-like proteins, defined by the presence of three highly homologous C-terminal zinc finger motifs and variant N-terminal domains, are emerging as important regulators of cell homeostasis. Promoters containing Sp1-like sites are essential for the expression of numerous genes necessary for cell cycle progression (1-3), DNA synthesis (4), and other cell processes (5-8), and studies have shown that certain Sp1-like proteins induce apoptosis (9), cell growth inhibition (10 -12), differentiation (13, 14), and carcinogenesis (15). In addition, the disruption of some Sp1-like genes in mice shows that these proteins are critical for normal development (12, 16 -18). Thus, understanding how Sp1-like proteins bind DNA and regulate transcription is important to uncover the molecular mechanisms underlying a large number of cellular events.The existence of at least 17 different Sp1-like proteins offers a significant challenge for understanding how individual members regulate gene expression in a tissue-, cell-, and promoterspecific manner. One mechanism leading to specificity among Sp1-like proteins is a differential pattern of expression. For instance, Sp1, TIEG2, and BTEB1 1 are ubiquitously expressed, whereas the KLF proteins are restricted to certain tissues. Specificity among Sp1-like proteins is also dictated by recognition of DNA. For example, the Sp proteins preferentially bind GC sites (19,20) whereas the KLF subgroup prefers the CA site (21-23). Interestingly, co-expressed Sp1-like proteins exhibiting similar binding specificity, such as Sp1 and Sp3, but often display opposite transcriptional reg...
Immature double-positive (DP) thymocytes mature into CD4+CD8− cells in response to coengagement of TCR with any of a variety of cell surface “coinducer” receptors, including CD2. In contrast, DP thymocytes are signaled to undergo apoptosis by coengagement of TCR with CD28 costimulatory receptors, but the molecular basis for DP thymocyte apoptosis by TCR plus CD28 coengagement is not known. In the present study, we report that TCR plus CD28 coengagement does not invariably induce DP thymocyte apoptosis but, depending on the intensity of CD28 costimulation, can induce DP thymocyte maturation. We demonstrate that distinct but interacting signal transduction pathways mediate DP thymocyte maturation signals and DP thymocyte apoptotic signals. Specifically, DP maturation signals are transduced by the extracellular signal-related kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway and up-regulate expression of the antiapoptotic protein Bcl-2. In contrast, the apoptotic response stimulated by CD28 costimulatory signals is mediated by ERK/MAPK-independent pathways. Importantly, when TCR-activated thymocytes are simultaneously coengaged by both CD28 and CD2 receptors, CD28 signals can inhibit ERK/MAPK-dependent Bcl-2 protein up-regulation. Thus, there is cross-talk between the signal transduction pathways that transduce apoptotic and maturation responses, enabling CD28-initiated signal transduction pathways to both stimulate DP thymocyte apoptosis and also negatively regulate maturation responses initiated by TCR plus CD2 coengagement.
The Sp1-like family of transcription factors is emerging as an integral part of the cellular machinery involved in the control of gene expression. Members of this family of proteins contain three highly homologous C-terminal zinc-finger motifs that bind GC-rich sequences found in the promoters of a diverse number of genes, such as the basic transcription element (BTE) in the promoter of the carcinogen-metabolizing cytochrome P4501A1 (CYP1A1) gene. In the present study, we report the molecular and functional characterization of BTE-binding protein (BTEB) 4, a novel ubiquitously expressed member of the Sp1-like proteins family. This protein represents a new homologue of BTEB1, originally described as a regulator of the BTE site in the CYP1A1 gene promoter. Similarly to the recently described BTEB3, we demonstrate that the N-terminal region of BTEB4 directly represses transcription and binds the co-repressor mSin3A. In addition, we show that the C-terminal zinc-finger domain of BTEB4 binds specifically the BTE site of the CYP1A1 promoter, similar to BTEB1 and BTEB3. Also, we show that both BTEB3 and BTEB4 repress the CYP1A1 gene promoter via the BTE site in HepG2 and BxPC3 cells. Thus the identification of this protein expands the repertoire of BTEB-like members of the Sp1-like protein family involved in transcriptional repression. Furthermore, our results demonstrate that the BTEB subfamily can repress the CYP1A1 gene promoter via the BTE site.
The co-ordinated induction of several hepatic drug-metabolizing enzymes is a common feature in the regulation of drug biotransformation under normal and pathological conditions. In the present study the activity and expression of bilirubin UDP-glucuronosyltransferase (UGT1A1) were investigated in livers of BioBreeding/Worcester diabetic, fasted and acetone-treated rats. Bilirubin glucuronidation was stimulated by all three treatments; this was correlated with an increase in the UGT1A1 protein concentration in hepatic microsomes. Transcriptional induction of UGT1A1 was also observed in diabetes and starvation but not with acetone treatment, which apparently caused translational stabilization of the enzyme protein. The hormonal/metabolic alterations in diabetes and starvation might be a model for postnatal development. The sudden interruption of maternal glucose supply signals the enhanced expression of UGT1A1, giving a novel explanation for the physiological induction of bilirubin glucuronidation in newborn infants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.