Dog owners are often impressed by their dog's sense of smell. Many of these dogs, however, have skulls that are quite altered from those of their closest canid relatives. Housed within these skulls are essential olfactory structures like the cribriform plate that play a role in olfaction and the transmission of olfactory nerve impulses to the olfactory bulb of the brain. With improvements in CT technology and accessibility, we are now able to digitally reconstruct in 3D cribriform plate morphology and study its variation within and among species. In this study, we CT scanned the skulls of 95 dog specimens from 45 different domestic dog breeds and 12 species of wild canid and compared the shape of the cribriform plate among three main groups: domestic dog breeds, wolf‐like canids, and fox‐like canids. Despite only recent selective pressure for extreme skull morphology, domestic dogs display much more variation in cribriform plate shape than wild canids, indicating that cribriform plate shape is plastic and linked to skull shape. Intense artificial selection on domestic dog skull phenotype in the last 200 years has clear effects on secondary features of the domestic dog skull, implying that selection for overt phenotypes also can impact other anatomical features associated with the skull, like the cribriform plate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.