Migratory birds engage in 2 periods of endurance flight annually as they travel between summer breeding and overwintering grounds, and such endurance flights likely incur oxidative costs. These costs may differ between fall and spring migration, especially for females who must prepare for breeding and egg laying in spring. The objective of this study of a migratory bird was to test proposed hypotheses about how key components of the female’s antioxidant system differ in response to flight training in the fall and spring and to dietary antioxidant supplementation. We hand raised female European Starlings (Sturnus vulgaris) and fed them either a diet supplemented with dietary anthocyanins or a diet without added anthocyanins. We flew females in a wind tunnel for 15 days during fall and spring migration seasons and measured over time oxidative lipid damage (d-ROMs) and 3 components of the antioxidant system: nonenzymatic antioxidant capacity (OXY), uric acid, and glutathione peroxidase (GPx) activity. Prior to flight training, OXY and oxidative damage were lower in females during spring compared with fall, and females fed a low-antioxidant diet had consistently higher circulating uric acid. GPx activity decreased more in spring immediately after a long-duration flight. Females fed a high-antioxidant diet had a greater decrease in OXY after the 15-day flight training. Flight-trained females had higher circulating uric acid than untrained females immediately after the longest-duration flight and decreased GPx activity after the 15-day flight training. In sum, females upregulated enzymatic and nonenzymatic endogenous antioxidants in spring, and females fed a diet with less antioxidants appear to compensate by increasing circulating uric acid. Our findings emphasize the important role of dietary antioxidants for birds during migration, and similar flights in fall and spring likely represent distinct oxidative challenges in the life history of female birds.
Animals dynamically adjust their physiology and behavior to survive in changing environments, and seasonal migration is one life stage that demonstrates these dynamic adjustments. As birds migrate between breeding and wintering areas, they incur physiological demands that challenge their antioxidant system. Migrating birds presumably respond to these oxidative challenges by up-regulating protective endogenous systems or accumulating dietary antioxidants at stopover sites, although our understanding of the pre-migration preparations and mid-migration responses of birds to such oxidative challenges is as yet incomplete. Here we review evidence from field and captive-bird studies that address the following questions: (1) Do migratory birds build antioxidant capacity as they build fat stores in preparation for long flights? (2) Is oxidative damage an inevitable consequence of oxidative challenges such as flight, and, if so, how is the extent of damage affected by factors such as the response of the antioxidant system, the level of energetic challenge, and the availability of dietary antioxidants? (3) Do migratory birds ‘recover’ from the oxidative damage accrued during long-duration flights, and, if so, does the pace of this rebalancing of oxidative status depend on the quality of the stopover site? The answer to all these questions is a qualified ‘yes’ although ecological factors (e.g., diet and habitat quality, geographic barriers to migration, and weather) affect how the antioxidant system responds. Furthermore, the pace of this dynamic physiological response remains an open question, despite its potential importance for shaping outcomes on timescales ranging from single flights to migratory journeys. In sum, the antioxidant system of birds during migration is impressively dynamic and responsive to environmental conditions, and thus provides ample opportunities to study how the physiology of migratory birds responds to a changing and challenging world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.