Given the impact that climate change is projected to have on agriculture, it is essential to understand the mechanisms and conditions that drive agricultural land suitability. However, existing literature does not provide sufficient guidance on the best modeling methodology to study crop suitability, and there is even less research on how to evaluate the accuracy of such models. Further, studies have yet to demonstrate the use of the Maximum Entropy (Maxent) model in predicting presence and yield of large-scale field crops in the United States. In this study, we investigate the application of the Maxent model to predict crop suitability and present novel methods of evaluating its predictive ability. Maxent is a correlative machine learning model often used to predict cropland suitability. In this study, we used Maxent to model land suitability for corn production in the contiguous United States under current bioclimatic conditions. We developed methods for evaluating Maxent’s predictive ability through three comparisons: (i) classification of suitable land units and comparison of results with another similar species distribution model (Random Forest Classification), (ii) comparison of output response curves with existing literature on corn suitability thresholds, and (iii) with correlation of predicted suitability with observed extent and yield. We determined that Maxent was superior to Random Forest, especially in its modeling of areas in which land was likely suitable for corn but was not currently associated with observed corn presence. We also determined that Maxent’s predictions correlated strongly with observed yield statistics and were consistent with existing literature regarding the range of bioclimatic variable values associated with suitable production conditions for corn. We concluded that Maxent was an effective method for modeling current cropland suitability and could be applied to broader issues of agriculture–climate relationships.
<p>Land use / land cover (LULC) maps provide critical information to governments, land use planners, and decision-makers about the spatial layout of the environment and how it is changing. &#160;While a variety of LULC products exist, they are often coarse in resolution, not updated regularly, or require manual editing to be useful.&#160; In partnership, Esri, Microsoft Planetary Computer, and Impact Observatory created the world&#8217;s first publicly available 10-m LULC map by automating and sharing a deep-learning model that was run on over 450,000 Sentinel-2 scenes. &#160;The resulting map, released freely on Esri&#8217;s Living Atlas in June 2021, displays ten classes across the globe: built area, trees, scrub/shrub, cropland, bare ground, flooded vegetation, water, grassland, permanent snow/ice, clouds.&#160; Here, we discuss key findings from the resulting map, including a quantitative analysis of how 10-m resolution allows us to assess small, low density urban areas compared to other LULC products, including the Copernicus CGLS-LC100 100-m resolution global map. &#160;We will also share how we support project-based, on-demand LULC mapping and will present preliminary findings from a new globally consistent 2017-2021 annual LULC dataset across the entire Sentinel-2 archive.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.