We studied the effect of an acute infusion of quinolinic acid (QUIN) on in vivo hydroxyl radical (.OH) formation in the striatum of awake rats. Using the microdialysis technique, the generation of.OH was assessed through electrochemical detection of the salicylate hydroxylation product 2,3-dihydroxybenzoic acid (2,3-DHBA). The .OH extracellular levels increased up to 30 times over basal levels after QUIN infusion (240 nmol/microl), returning to the baseline 2 h later. This response was attenuated, but not abolished, by pretreatment with the NMDA receptor antagonist MK-801 (10 mg/kg, i.p.) 60 min before QUIN infusion. The mitochondrial toxin 3-nitropropionic acid (3-NPA, 500 nmol/microl) had stronger effects than QUIN on .OH generation, as well as on other markers of oxidative stress explored as potential consequences of .OH increased levels. These results support the hypothesis that early .OH generation contributes to the pattern of toxicity elicited by QUIN. The partial protection by MK-801 suggests that QUIN neurotoxicity is not completely explained through NMDA receptor overactivation, but it may also involve intrinsic QUIN oxidative properties.
Adult rats emit ultrasonic vocalizations (USVs) related to their affective states, potentially providing information about their subjective experiences during behavioral neuroscience experiments. If so, USVs might provide an important link between invasive animal preclinical studies and human studies in which subjective states can be readily queried. Here, we induced USVs in male and female Long Evans rats using acute amphetamine (2 mg/kg), and asked how reversibly inhibiting nucleus accumbens neurons using designer receptors exclusively activated by designer drugs (DREADDs) impacts USV production. We analyzed USV characteristics using “Deepsqueak” software, and manually categorized detected calls into four previously defined subtypes. We found that systemic administration of the DREADD agonist clozapine-n-oxide, relative to vehicle in the same rats, suppressed the number of frequency-modulated and trill-containing USVs without impacting high frequency, unmodulated (flat) USVs, nor the small number of low-frequency USVs observed. Using chemogenetics, these results thus confirm that nucleus accumbens neurons are essential for production of amphetamine-induced frequency-modulated USVs. They also support the premise of further investigating the characteristics and subcategories of these calls as a window into the subjective effects of neural manipulations, with potential future clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.