Reproductive growth and development of cool‐season grasses is primarily driven by air temperature and photoperiod. This study was conducted near Salina, KS, to model the effects of growing degree days (GDD), day of the year (DOY), and cropping systems on first‐ and second‐year intermediate wheatgrass [Thinopyrum intermedium (Host) Barkworth & D.R. Dewey] (IWG) in Kernza perennial grain production systems. In 2018 and 2019, GDD and DOY were highly correlated with reproductive growth and development (i.e., mean stage count, head meristem height, and leaf, stem, and head biomass fractions). Row spacing, fertilization, and intercropping with alfalfa (Medicago sativa L.) did not influence IWG reproductive growth and development. Across years, DOY more closely predicted reproductive stages than GDD, indicating a greater response to photoperiod than air temperature. After stem initiation, the fraction of total biomass allocated to leaves decreased, whereas stem and head biomass increased in response to GDD and DOY. At anthesis, stem biomass exceeded leaf and head biomass. Parameterizing GDD and DOY models for management in IWG dual‐purpose, Kernza grain production systems will require additional datasets from many locations and environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.