An unusual feature of the cerebellar cortex is that its output neurons, Purkinje cells, are GABAergic. Their high intrinsic firing rates1 (50 Hz) and extensive convergence2,3 predict that that target neurons in the cerebellar nuclei would be largely inhibited unless Purkinje cells pause their spiking, yet Purkinje and nuclear neuron firing rates do not always vary inversely4. A potential clue to how these synapses transmit information is that populations of Purkinje neurons synchronize their spikes during cerebellar behaviors5–11. If nuclear neurons respond to Purkinje synchrony, they may encode signals from subsets of inhibitory inputs7,12–14. Here we show in weanling and adult mice that nuclear neurons transmit the timing of synchronous Purkinje afferent spikes, owing to modest Purkinje-to-nuclear convergence ratios (~40:1), fast IPSC kinetics (τdecay=2.5 ms), and high intrinsic firing rates (~90 Hz). In vitro, dynamically clamped asynchronous IPSPs mimicking Purkinje afferents suppress nuclear cell spiking, whereas synchronous IPSPs entrain nuclear cell spiking. With partial synchrony, nuclear neurons time-lock their spikes to the synchronous subpopulation of inputs, even when only 2 of 40 afferents synchronize. In vivo, nuclear neurons reliably phase-lock to regular trains of molecular layer stimulation. Thus, cerebellar nuclear neurons can preferentially relay the spike timing of synchronized Purkinje cells to downstream premotor areas.
Area X is a songbird basal ganglia nucleus that is required for vocal learning. Both Area X and its immediate surround, the medial striatum (MSt), contain cells displaying either striatal or pallidal characteristics. We used pathway-tracing techniques to compare directly the targets of Area X and MSt with those of the lateral striatum (LSt) and globus pallidus (GP). We found that the zebra finch LSt projects to the GP, substantia nigra pars reticulata (SNr) and pars compacta (SNc), but not the thalamus. The GP is reciprocally connected with the subthalamic nucleus (STN) and projects to the SNr and motor thalamus analog, the ventral intermediate area (VIA). In contrast to the LSt, Area X and surrounding MSt project to the ventral pallidum (VP) and dorsal thalamus via pallidal-like neurons. A dorsal strip of the MSt contains spiny neurons that project to the VP. The MSt, but not Area X, projects to the ventral tegmental area (VTA) and SNc, but neither MSt nor Area X projects to the SNr. Largely distinct populations of SNc and VTA dopaminergic neurons innervate Area X and surrounding the MSt. Finally, we provide evidence consistent with an indirect pathway from the cerebellum to the basal ganglia, including Area X. Area X projections thus differ from those of the GP and LSt, but are similar to those of the MSt. These data clarify the relationships among different portions of the oscine basal ganglia as well as among the basal ganglia of birds and mammals.
Highlights d Cerebellar anterior interposed nucleus (IntA) neurons are modulated near reach endpoint d Closed-loop optogenetic manipulation of IntA adjusts reach kinematics in real time d IntA activity is variably engaged to enhance reach endpoint precision d Data provide a mechanistic insight into reach dysmetria
Motor commands computed by the cerebellum are hypothesized to use corollary discharge, or copies of outgoing commands, to accelerate motor corrections. Identifying sources of corollary discharge, therefore, is critical for testing this hypothesis. Here, we verified that the pathway from the cerebellar nuclei to the cerebellar cortex in mice includes collaterals of cerebellar premotor output neurons, mapped this collateral pathway, and identified its postsynaptic targets. Following bidirectional tracer injections into a distal target of the cerebellar nuclei, the ventrolateral thalamus, we observed retrogradely labeled somata in the cerebellar nuclei and mossy fiber terminals in the cerebellar granule layer, consistent with collateral branching. Corroborating these observations, bidirectional tracer injections into the cerebellar cortex retrogradely labeled somata in the cerebellar nuclei and boutons in the ventrolateral thalamus. To test whether nuclear output neurons projecting to the red nucleus also collateralize to the cerebellar cortex, we used a Cre-dependent viral approach, avoiding potential confounds of direct red nucleus-to-cerebellum projections. Injections of a Cre-dependent GFP-expressing virus into Ntsr1-Cre mice, which express Cre selectively in the cerebellar nuclei, retrogradely labeled somata in the interposed nucleus and putative collateral branches terminating as mossy fibers in the cerebellar cortex. Postsynaptic targets of all labeled mossy fiber terminals were identified using immunohistochemical Golgi cell markers and electron microscopic profiles of granule cells, indicating that the collaterals of nuclear output neurons contact both Golgi and granule cells. These results clarify the organization of a subset of nucleocortical projections which constitute an experimentally accessible corollary discharge pathway within the cerebellum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.