BACKGROUND: Despite its established safety, efficacy, and relative simplicity, CPAP treatment is not widely available for newborns and infants in low-and middle-income settings. A novel bubble CPAP system was designed to address the gaps in quality and accessibility of existing CPAP systems by providing blended, humidified, and pressurized gases without the need for electricity, compressed air, or manual power. This was the first study that tested the performance of the system with a simulated patient model. METHODS: In a spontaneously breathing 3dimensional printed nasal airway model of a preterm neonate, CPAP performance was assessed based on delivered pressure, oxygen level, and humidity at different settings. RESULTS: Preliminary device performance characteristics were within 5% among 3 separate devices. Performance testing showed accurate control of CPAP and oxygen concentration at all settings with the bubble CPAP system. Lung model pressure and oxygen concentration were shown to stay within 60.5 cm H 2 O and 64% of full scale of the device settings, respectively, with relative humidity > 80%. CONCLUSIONS: Performance testing of the bubble CPAP system demonstrated accurate control of CPAP and oxygen concentration with humidity levels suitable for premature newborns on noninvasive support.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.