Myodural bridges have been described in various species as connective tissue structures “bridging” small cranio-cervical muscles to the dura. Myodural bridges are thought to stabilize the dural sac during head and neck movements and promote cerebrospinal fluid motion; however, their role in neurological diseases has not yet been established. We report ultrasonographic visualization, necropsy, histopathologic and ultrastructural findings of myodural bridges in horses with hereditary equine regional dermal asthenia (HERDA), an equine model of Ehlers-Danlos syndromes. Five HERDA and 5 control horses were studied. Post-mortem examination and ultrasonographic studies (3 HERDA and 4 controls) demonstrated that the atlanto-occipital and atlanto-axial myodural bridges are dynamic structures “moving” the dura. En block resection of the myodural bridges (4 HERDA and 5 controls) was accomplished and histopathology showed myofiber degeneration in 3 HERDA horses and 1 control. Ultrastructural examination revealed loosely packed collagen fibrils with abnormal orientation in all HERDA horses compared to mild abnormalities in 2 controls. Our study provides necropsy and ultrasonographic evidence of the dynamic aspect of the myodural bridges as dural sac stabilizers. Myodural bridges may be pathologically altered in connective tissue disease as evidenced by the ultrastructural morphology in the HERDA myodural bridge.
OBJECTIVE
The craniocervical junction (CCJ) is anatomically complex and comprises multiple joints that allow for wide head and neck movements. The thecal sac must adjust to such movements. Accordingly, the thecal sac is not rigidly attached to the bony spinal canal but instead tethered by fibrous suspension ligaments, including myodural bridges (MDBs). The authors hypothesized that pathological spinal cord motion is due to the laxity of such suspension bands in patients with connective tissue disorders, e.g., hypermobile Ehlers-Danlos syndrome (EDS).
METHODS
The ultrastructure of MDBs that were intraoperatively harvested from patients with Chiari malformation was investigated with transmission electron microscopy, and 8 patients with EDS were compared with 8 patients without EDS. MRI was used to exclude patients with EDS and craniocervical instability (CCI). Real-time ultrasound was used to compare the spinal cord at C1–2 of 20 patients with EDS with those of 18 healthy control participants.
RESULTS
The ultrastructural damage of the collagen fibrils of the MDBs was distinct in patients with EDS, indicating a pathological mechanical laxity. In patients with EDS, ultrasound revealed increased cardiac pulsatory motion and irregular displacement of the spinal cord during head movements.
CONCLUSIONS
Laxity of spinal cord suspension ligaments and the associated spinal cord motion disorder are possible pathogenic factors for chronic neck pain and headache in patients with EDS but without radiologically proven CCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.