Avocado starch was extracted from the kernels of the fruit Persea americana Miller (Fam. Lauraceae) and evaluated for its potential as an alternative to maize starch as a pharmaceutical excipient. Its physicochemical and thermal properties were evaluated and compared with those of maize starch. Granules prepared with avocado and maize starch pastes as binder were evaluated for their flow, friability and compaction characteristics. The average yield of starch extracted from the fresh kernels of P. americana was 20.5 AE 0.55% w/w. The scanning electron micrograph (SEM) showed that avocado starch has two characteristic granule shapes; triangular and circular both having an approximate equal distribution. The triangular shaped granules are larger (28 to 32 mm) than the circular (6 to 9 mm). The foaming capacity of avocado starch was 19.05 AE 0.6%, its swelling, moisture uptake and paste clarity were generally lower than that of the maize starch. Avocado starch gel exhibited an extent of syneresis after freeze-thaw that increased cumulatively with increase in number of freezethaw cycles. The glass transition (T g ) and gelatinisation temperatures for avocado starch were higher than that of maize starch. The melting temperatures (T m ), ash value, as well as the various densities of avocado starch showed similarities with those of maize starch. The granules prepared with avocado starch pastes as binder showed superior compactibility and mechanical strength to those of maize starch but with similar flow characteristics. Avocado starch generally showed distinct physicochemical and binder properties with some similarities to the standard maize starch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.