Despite IL-9 functioning as a pleiotropic cytokine in mucosal environments, the IL-9–responsive cell repertoire is still not well defined. Here, we found that IL-9 mediates proallergic activities in the lungs by targeting lung macrophages. IL-9 inhibits alveolar macrophage expansion and promotes recruitment of monocytes that develop into CD11c
+
and CD11c
−
interstitial macrophage populations. Interstitial macrophages were required for IL-9–dependent allergic responses. Mechanistically, IL-9 affected the function of lung macrophages by inducing Arg1 activity. Compared with Arg1-deficient lung macrophages, Arg1-expressing macrophages expressed greater amounts of CCL5. Adoptive transfer of Arg1
+
lung macrophages but not Arg1
−
lung macrophages promoted allergic inflammation that
Il9r
−/−
mice were protected against. In parallel, the elevated expression of IL-9, IL-9R, Arg1, and CCL5 was correlated with disease in patients with asthma. Thus, our study uncovers an IL-9/macrophage/Arg1 axis as a potential therapeutic target for allergic airway inflammation.
Asthma is a chronic inflammatory lung disease with intermittent flares predominately mediated through memory T cells. Yet, the identity of long-term memory cells that mediate allergic recall responses is not well defined. In this report, using a mouse model of chronic allergen exposure followed by an allergen-free rest period, we characterized a subpopulation of CD4
+
T cells that secreted IL-9 as an obligate effector cytokine. IL-9–secreting cells had a resident memory T cell phenotype, and blocking IL-9 during a recall challenge or deleting IL-9 from T cells significantly diminished airway inflammation and airway hyperreactivity. T cells secreted IL-9 in an allergen recall–specific manner, and secretion was amplified by IL-33. Using scRNA-seq and scATAC-seq, we defined the cellular identity of a distinct population of T cells with a proallergic cytokine pattern. Thus, in a recall model of allergic airway inflammation, IL-9 secretion from a multicytokine-producing CD4
+
T cell population was required for an allergen recall response.
Among the cytokines regulating immune cells, IL-9 has gained considerable attention for its ability to act on multiple cell types as a regulator of beneficial and pathologic immune responses. Yet, it is still not clearly defined how IL-9 impacts immune responses. IL-9 demonstrates a remarkable degree of tissue-specific functionality and has cellular sources that vary by tissue site and the context of the inflammatory milieu. Here, we provide perspective to summarize the biological activities of IL-9 and highlight cell type–specific roles in the immune pathogenesis of diseases. This perspective will be important in defining the diseases where targeting IL-9 as a therapeutic strategy would be beneficial and where it has the potential to complicate clinical outcomes.
Although IL-9 has potent anti-tumor activity in adoptive cell transfer therapy, some models suggest that it can promote tumor growth. Here, we show that IL-9 signaling is associated with poor outcomes in patients with various forms of lung cancer, and is required for lung tumor growth in multiple mouse models. CD4+ T cell-derived IL-9 promotes the expansion of both CD11c+ and CD11c− interstitial macrophage populations in lung tumor models. Mechanistically, the IL-9/macrophage axis requires arginase 1 (Arg1) to mediate tumor growth. Indeed, adoptive transfer of Arg1+ but not Arg1- lung macrophages to Il9r−/− mice promotes tumor growth. Moreover, targeting IL-9 signaling using macrophage-specific nanoparticles restricts lung tumor growth in mice. Lastly, elevated expression of IL-9R and Arg1 in tumor lesions is associated with poor prognosis in lung cancer patients. Thus, our study suggests the IL-9/macrophage/Arg1 axis is a potential therapeutic target for lung cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.