As a first step toward understanding how rare variants contribute to risk for complex diseases, we sequenced 15,585 human protein-coding genes to an average median depth of 111× in 2440 individuals of European (n = 1351) and African (n = 1088) ancestry. We identified over 500,000 single-nucleotide variants (SNVs), the majority of which were rare (86% with a minor allele frequency less than 0.5%), previously unknown (82%), and population-specific (82%). On average, 2.3% of the 13,595 SNVs each person carried were predicted to affect protein function of ∼313 genes per genome, and ∼95.7% of SNVs predicted to be functionally important were rare. This excess of rare functional variants is due to the combined effects of explosive, recent accelerated population growth and weak purifying selection. Furthermore, we show that large sample sizes will be required to associate rare variants with complex traits.
Genome-wide association studies suggest that common genetic variants explain only a small fraction of heritable risk for common diseases, raising the question of whether rare variants account for a significant fraction of unexplained heritability1,2. While DNA sequencing costs have fallen dramatically3, they remain far from what is necessary for rare and novel variants to be routinely identified at a genome-wide scale in large cohorts. We have therefore sought to develop second-generation methods for targeted sequencing of all protein-coding regions (`exomes'), to reduce costs while enriching for discovery of highly penetrant variants. Here we report on the targeted capture and massively parallel sequencing of the exomes of twelve humans. These include eight HapMap individuals representing three populations4, and four unrelated individuals with a rare dominantly inherited disorder, Freeman-Sheldon syndrome (FSS)5. We demonstrate the sensitive and specific identification of rare and common variants in over 300 megabases (Mb) of coding sequence. Using FSS as a proof-of-concept, we show that candidate genes for monogenic disorders can be identified by exome sequencing of a small number of unrelated, affected individuals. This strategy may be extendable to diseases with more complex genetics through larger sample sizes and appropriate weighting of nonsynonymous variants by predicted functional impact.
We demonstrate the first successful application of exome sequencing to discover the gene for a rare, Mendelian disorder of unknown cause, Miller syndrome (OMIM %263750). For four affected individuals in three independent kindreds, we captured and sequenced coding regions to a mean coverage of 40X, and sufficient depth to call variants at ~97% of each targeted exome. Filtering against public SNP databases and a small number of HapMap exomes for genes with two novel variants in each of the four cases identified a single candidate gene, DHODH, which encodes a key enzyme in the pyrimidine de novo biosynthesis pathway. Sanger sequencing confirmed the presence of DHODH mutations in three additional families with Miller syndrome. Exome sequencing of a small number of unrelated, affected individuals is a powerful, efficient strategy for identifying the genes underlying rare Mendelian disorders and will likely transform the genetic analysis of monogenic traits.
Exome sequencing - the targeted sequencing of the subset of the human genome that is protein coding - is a powerful and cost-effective new tool for dissecting the genetic basis of diseases and traits that have proved to be intractable to conventional gene-discovery strategies. Over the past 2 years, experimental and analytical approaches relating to exome sequencing have established a rich framework for discovering the genes underlying unsolved Mendelian disorders. Additionally, exome sequencing is being adapted to explore the extent to which rare alleles explain the heritability of complex diseases and health-related traits. These advances also set the stage for applying exome and whole-genome sequencing to facilitate clinical diagnosis and personalized disease-risk profiling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.