A technique to generate (periodic or nonperiodic) oscillations systematically in first-order, continuous-time systems via a nonlinear function of the state, delayed by a certain time d, is proposed. This technique consists in choosing a nonlinear function of the delayed state with some passivity properties, tuning a gain to ensure that all the equilibrium points of the closed-loop system be unstable, and then imposing conditions on the closed-loop system to be semipassive. We include several typical examples to illustrate the effectiveness of the proposed technique, with which we can generate a great variety of chaotic attractors. We also include a physical example built with a simple electronic circuit that, after applying the proposed technique, displays a similar behavior to the logistic map.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.