Materials strengthened by conventional methods such as strain hardening, solute additions, precipitation and grain size refinement are often adopted in industrial processes. But there is limitation to the amount of deformation that these conventional methods can impact to a material. This study focused on the review of major mechanical properties of aluminum alloys in the presence of an ultrafine grain size into polycrystalline materials by subjecting the metal to an intense plastic straining through simple shear without any corresponding change in the cross-sectional dimensions of the sample. The effect of the heavy strain rate on the microstructure of aluminum alloys was in refinement of the coarse grains into ultrafine grain size by introducing a high density of dislocations and subsequently re-arranging the dislocations to form an array of grain boundaries. Hence, this investigation is aimed at gathering contributions on the influence of equal channel angular extrusion toward improving the mechanical properties of the aluminum alloys through intense plastic strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.