In this paper, a dielectric resonator antenna (DRA) with high gain and wide impedance bandwidth for fifth-generation (5G) wireless communication applications is proposed. The dielectric resonator antenna is designed to operate at higher-order T E δ 15 x mode to achieve high antenna gain, while a hollow cylinder at the center of the DRA is introduced to improve bandwidth by reducing the quality factor. The DRA is excited by a 50 Ω microstrip line with a narrow aperture slot. The reflection coefficient, antenna gain, and radiation pattern of the proposed DRAs are analyzed using the commercially available full-wave electromagnetic simulation tool CST Microwave Studio (CST MWS). In order to verify the simulation results, the proposed antenna structures were fabricated and experimentally validated. Measured results of the fabricated prototypes show a 10-dB return loss impedance bandwidth of 10.7% (14.3–15.9GHz) and 16.1% (14.1–16.5 GHz) for DRA1 and DRA2, respectively, at the operating frequency of 15 GHz. The results show that the designed antenna structure can be used in the Internet of things (IoT) for device-to-device (D2D) communication in 5G systems.
In this paper, wideband high gain dielectric resonator antenna for 5G applications is presented. Higher order mode is exploited to enhance the antenna gain, while the array of symmetrical cylindrical shaped holes drilled in the DRA to improves the bandwidth by reducing the quality factor. The proposed DRA is designed using dielectric material with relative permittivity of 10 and loss tangent of 0. 002.The Rogers RT/Droid 5880 has been selected as substrate with relative permittivity of 2.2, loss tangent of 0.0009- and 0.254-mm thickness. The simulated results show that, the proposed geometry has achieved a wide impedance bandwidth of 17.3% (23.8-28.3GHz=4.5 GHz) for S11-10 dB, and a maximum gain of about 9.3 dBi with radiation efficiency of 96% at design frequency of 26 GHz. The DRA is feed by microstrip transmission line with slot aperture. The reflection coefficient, the radiation pattern, and the antenna gain are studied by full-wave EM simulator CST Microwave Studio. The proposed antenna can be used for the 5G communication applications such as device to device communication (D2D).
In this paper, dielectric resonator antenna (DRA) with enhanced gain operating on the higher order mode (𝑇𝐸 𝛿15 𝑥 ) is presented. The dielectric resonator antenna with dielectric constant 𝜀 𝑟 of 10 and loss tangent of 0.002 is used. The DRA is fed by microstrip line through an aperture slot. The proposed antenna is designed at 26 GHz and achieved a gain of 7.9 dBi with corresponding simulated radiation efficiency of 93%. The impedance bandwidth of 1.5 GHz from 25.1 GHz to 26.6 GHz has been achieved. The reflection coefficient, antenna gain, radiation patterns, and efficiency of the antenna are studied. Simulations are performed using CST microwave studio, and their results are presented.
A novel method of feeding a dielectric resonator using a metallic circular patch antenna at millimeter wave frequency band is proposed here. A ceramic material based rectangular dielectric resonator antenna with permittivity 10 is placed over a rogers RT-Duroid based substrate with permittivity 2.2 and fed by a metallic circular patch via a cross slot aperture on the ground plane. The evolution study and analysis has been done using a rectangular slot and a cross slot aperture. The cross-slot aperture has enhanced the gain of the single element non-metallic dielectric resonator antenna from 6.38 dB from 8.04 dB. The Dielectric Resonator antenna (DRA) which is designed here has achieved gain of 8.04 dB with bandwidth 1.12 GHz (24.82–25.94 GHz) and radiation efficiency of 96% centered at 26 GHz as resonating frequency. The cross-slot which is done on the ground plane enhances the coupling to the Dielectric Resonator Antenna and achieves maximum power radiation along the broadside direction. The slot dimensions are further optimized to achieve the desired impedance match and is also compared with that of a single rectangular slot. The designed antenna can be used for the higher frequency bands of 5G from 24.25 GHz to 27.5 GHz. The mode excited here is characteristics mode of TE1Y1. The antenna designed here can be used for indoor small cell applications at millimeter wave frequency band of 5G. High gain and high efficiency make the DRA designed here more suitable for 5G indoor small cells. The results of return loss, input impedance match, gain, radiation pattern, and efficiency are shown in this paper.
This paper represents design of a wideband Rectangular Dielectric Resonator antenna fed by an aperture coupled technique. A bandwidth of 2.2 GHz has been achieved using a cross slot aperture in a ground plane for Dielectric Resonator Antenna (DRA). The simulated gain value achieved is 6.5 dBi. The Rectangular Dielectric Resonator which has been designed in this paper can be used in 5G application frequency band of 24.25-27.5 GHz. The calculated percentage bandwidth is 15.38%. An optimization of slot dimensions has also mentioned which can help to select a desired impedance match. The measured gain and bandwidth are efficient to use this design for various 5G applications. This unit cell wideband DRA can be used for millimeter wave frequencies of 5G.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.