In this paper, an analytical study has been carried out on a steady magnetohydrodynamics (MHD) Poiseuille flow of two immiscible fluids in a horizontal channel with ohmic heating in the presence of an applied magnetic field. The channel is divided into two sections, Region I and Region II, respectively. Region I contains an electrically conducting, third grade, non‐Newtonian fluid while Region II is a Newtonian fluid. The regular Perturbation series method is used to transform the coupled nonlinear differential equations governing the flow into a system of linear ordinary differential equations in both fluid regions. Suitable interface matching conditions were chosen to obtain separate solutions for each fluid in both regions and the results were displayed graphically for various values of physical parameters, such as pressure gradient, suction parameter, Hartmann number, Prandtl number, viscosity, and conductivity ratios to show their effects on the flow. The effect of skin friction and Nusselt number was shown with the aid of tables. The results obtained among other findings clearly shows that as the value of the magnetic parameter increases, the velocity and temperature of the fluid decrease.
In this study, two distinct nanoparticles: aluminum oxide (Al 2 O 3 ) and copper (Cu) are chosen as nanomaterials to examine the effects of nonlinear electrically conducting magnetohydrodynamic radiation on the flow of tangential hyperbolic hybrid nanofluid across a nonlinearly stretched sheet with convective boundary conditions. The equations that regulate fluid flow are represented as partial differential equations. These equations are reduced to their equivalent ordinary differential equations, which are solved using the homotopy analysis approach with the help of similarity variables. The effect of essential physical factors on fluid velocity, temperature, skin friction coefficient, and local Nusselt number is investigated and discussed. Results ascertain that the heat transfer rate of Cu/H 2 O nanofluid becomes high when equated to Cu-Al 2 O 3 / H 2 O nanofluid. Furthermore, the temperature distribution enhances with the rise in solid volume fraction while it diminishes with improved magnetic field for both nanofluid and hybrid nanofluid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.