Arsenic concentrations in a much larger fraction of U.S. groundwater sources will exceed the maximum contaminant limit when the new 10 microg L(-1) EPA standard for drinking water takes effect in 2006. Thus, it is important to develop remediation technologies that can meet this new standard. Phytoremediation of arsenic-contaminated groundwater is a relatively new idea. In this research, an arsenic-hyperaccumulating fern, commonly known as Chinese Brake fern (Pteris vittata L.), was grown hydroponically to examine its effectiveness in arsenic removal from what is believed to be herbicide-contaminated groundwater. One plant grown in 600 mL of groundwater effectively reduced the arsenic concentration from 46 to less than 10 microg L(-1) in 3 days. Re-used plants continued to take up arsenic from the groundwater, albeit at a slower rate (from 46 to 20 microg L(-1) during the same time). Young fern plants were more efficient in removing arsenic than were older fern plants of similar size. The addition of a supplement of phosphate-free Hoagland nutrition to the groundwater had little effect on arsenic removal, but the addition of phosphate nutrition significantly reduced its arsenic affinity and, thus, inhibited the arsenic removal. This study suggested that Chinese Brake has some potential to remove arsenic from groundwater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.