Extensive research on the production of energy and valuable materials from plastic waste using pyrolysis has been widely conducted during recent years. Succeeding in demonstrating the sustainability of this technology economically and technologically at an industrial scale is a great challenge. In most cases, crude pyrolysis products cannot be used directly for several reasons, including the presence of contaminants. This is confirmed by recent studies, using advanced characterization techniques such as two-dimensional gas chromatography. Thus, to overcome these limitations, post-treatment methods, such as dechlorination, distillation, catalytic upgrading and hydroprocessing, are required. Moreover, the integration of pyrolysis units into conventional refineries is only possible if the waste plastic is pre-treated, which involves sorting, washing and dehalogenation. The different studies examined in this review showed that the distillation of plastic pyrolysis oil allows the control of the carbon distribution of different fractions. The hydroprocessing of pyrolytic oil gives promising results in terms of reducing contaminants, such as chlorine, by one order of magnitude. Recent developments in plastic waste and pyrolysis product characterization methods are also reported in this review. The application of pyrolysis for energy generation or added-value material production determines the economic sustainability of the process.
In this study, iron-rich mining residue (UGSO) was used as a support to prepare a new Ni-based catalyst via a solid-state reaction protocol. Ni-UGSO with different Ni weight percentages wt.% (5, 10, and 13) were tested for C2H4 dry reforming (DR) and catalytic cracking (CC) after activation with H2. The reactions were conducted in a differential fixed-bed reactor at 550–750 °C and standard atmospheric pressure, using 0.5 g of catalyst. Pure gases were fed at a molar ratio of C2H4/CO2 = 3 for the DR reaction and C2H4/Ar = 3 for the CC reaction. The flow rate is defined by a GHSV = 4800 mLSTP/h.gcat. The catalyst performance is evaluated by calculating the C2H4 conversion as well as carbon and H2 yields. All fresh, activated, and spent catalysts, as well as deposited carbon, were characterized by Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX), transmission electron microscopy (TEM), temperature programmed reduction (TPR), and thermogravimetric analysis (TGA). The results so far show that the highest carbon and H2 yields are obtained with Ni-UGSO 13% at 750 °C for the CC reaction and at 650 °C for the DR reaction. The deposited carbon was found to be filamentous and of various sizes (i.e., diameters and lengths). The analyses of the results show that iron is responsible for the growth of carbon nanofilaments (CNF) and nickel is responsible for the split of C–C bonds. In terms of conversion and yield efficiencies, the performance of the catalytic formulations tested is proven at least equivalent to other Ni-based catalyst performances described by the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.