In the health care and medical domain, it has been proven challenging to diagnose correctly many diseases with complicated and interferential symptoms, including arrhythmia. However, with the evolution of artificial intelligence (AI) techniques, the diagnosis and prognosis of arrhythmia became easier for the physicians and practitioners using only an electrocardiogram (ECG) examination. This review presents a synthesis of the studies conducted in the last 12 years to predict arrhythmia’s occurrence by classifying automatically different heartbeat rhythms. From a variety of research academic databases, 40 studies were selected to analyze, among which 29 of them applied deep learning methods (72.5%), 9 of them addressed the problem with machine learning methods (22.5%), and 2 of them combined both deep learning and machine learning to predict arrhythmia (5%). Indeed, the use of AI for arrhythmia diagnosis is emerging in literature, although there are some challenging issues, such as the explicability of the Deep Learning methods and the computational resources needed to achieve high performance. However, with the continuous development of cloud platforms and quantum calculation for AI, we can achieve a breakthrough in arrhythmia diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.