International audienceSocial content generated by users' interactions in social networks is a knowledge source that may enhance users' profiles modeling, by providing information on their activities and interests over time. The aim of this article is to propose several original strategies for modeling profiles of social networks' users , taking into account social information and its temporal evolution. We illustrate our approach on the Twitter network. We distinguish interactive and thematic temporal profiles and we study profiles' similarities by applying various clustering algorithms, by giving a special attention to overlapping clusters. We compare the different types of profiles obtained and show how they can be relevant for the recommendation of hashtags and users to follow
The explosion of web 2.0 and social networks has created an enormous and rewarding source of information that has motivated researchers in different fields to exploit it. Our work revolves around the issue of access and identification of social information and their use in building a user profile enriched with a social dimension, and operating in a process of personalization and recommendation. We study several approaches of Social IR (Information Retrieval), distinguished by the type of incorporated social information. We also study various social recommendation approaches classified by the type of recommendation. We then present a study of techniques for modeling the social user profile dimension, followed by a critical discussion. Thus, we propose our social recommendation approach integrating an advanced social user profile model.
L’explosion du web 2.0 et des réseaux sociaux a crée une source d’information énorme et enrichissante qui a motivé les chercheurs dans différents domaines à l’exploiter. Notre travail s’articule autour de la problématique d’accès et d’identification des informations sociales et leur exploitation dans la construction d’un profil utilisateur enrichi d’une dimension sociale, et son exploitation dans un processus de personnalisation et de recommandation. Nous étudions différentes approches sociales de RI (Recherche d’Information), distinguées par le type d’informations sociales incorporées. Nous étudions également diverses approches de recommandation sociale classées par le type de recommandation. Nous exposons ensuite une étude des techniques de modélisation de la dimension sociale du profil utilisateur, suivie par une discussion critique. Ainsi, nous présentons notre approche de recommandation sociale proposée intégrant un modèle avancé de profil utilisateur social.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.