The Internet of things (IoT) is a new ubiquitous technology that relies on heterogeneous devices and protocols. The IoT technologies are expected to offer a new level of connectivity thanks to its smart devices able to enhance everyday tasks and facilitate smart decisions based on sensed data. The IoT could collect sensitive data and should be able to face attacks and privacy issues. The IoT security issue is a hot topic of research and industrial concern. Indeed, threats against IoT devices and services could cause security breaches and data leakage. Aiming to identify attempts to abuse the IoT systems and mitigate malicious events, this paper studied the Intrusion Detection Systems (IDS) based on Machine Learning (ML) techniques. The ML approach could provide good tools to detect novel intrusion activities in a timely manner. This paper, therefore, highlighted the related issues to develop secured and efficient IoT services. It tried to allow a comprehensive review of IoT features and design. It mainly focused on intrusion detection based on the machine learning schema and built a taxonomy of different IoT attacks and threats. This paper also compared between the different intrusion detection techniques and established a taxonomy of machine leaning methods for intrusion detection solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.