A novel hyperchaotic system with fractional-order (FO) terms is designed. Its highly complex dynamics are investigated in terms of equilibrium points, Lyapunov spectrum, and attractor forms. It will be shown that the proposed system exhibits larger Lyapunov exponents than related hyperchaotic systems. Finally, to enhance its potential application, a related circuit is designed by using the MultiSIM Software. Simulation results verify the effectiveness of the suggested circuit.
This paper provides a thorough survey of new chaotic and hyperchaotic systems. An analysis of the dynamic behavior of these complex systems is presented by pointing out their originality and elementary characteristics. Recently, such systems have been increasingly used in various fields such as secure communication, encryption and finance and so on. In practice, each field requires specific performances with peculiar complexity. A particular classification is then proposed in this paper based on the Lyapunov exponent, the equilibriums points and the attractor forms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.