a b s t r a c t "Inverse vaccination" refers to antigen-specific tolerogenic immunization treatments that are capable of inhibiting autoimmune responses. In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), initial trials using purified myelin antigens required repeated injections because of the rapid clearance of the antigens. This problem has been overcome by DNA-based vaccines encoding for myelin autoantigens alone or in combination with "adjuvant" molecules, such as interleukin (IL)-4 or IL-10, that support regulatory immune responses. Phase I and II clinical trials with myelin basic protein (MBP)-based DNA vaccines showed positive results in reducing magnetic resonance imaging (MRI)-measured lesions and inducing tolerance to myelin antigens in subsets of MS patients. However, DNA vaccination has potential risks that limit its use in humans. An alternative approach could be the use of protein-based inverse vaccines loaded in polymeric biodegradable lactic-glycolic acid (PLGA) nano/microparticles (NP) to obtain the sustained release of antigens and regulatory adjuvants. The aim of this work was to test the effectiveness of PLGA-NP loaded with the myelin oligodendrocyte glycoprotein (MOG) autoantigen and recombinant (r) IL-10 to inverse vaccinate mice with EAE. In vitro experiments showed that upon encapsulation in PLGA-NP, both MOG 35-55 and rIL-10 were released for several weeks into the supernatant. PLGA-NP did not display cytotoxic or proinflammatory activity and were partially endocytosed by phagocytes. In vivo experiments showed that subcutaneous prophylactic and therapeutic inverse vaccination with PLGA-NP loaded with MOG 35-55 and rIL-10 significantly ameliorated the course of EAE induced with MOG 35-55 in C57BL/6 mice. Moreover, they decreased the histopathologic lesions in the central nervous tissue and the secretion of IL-17 and interferon (IFN)-␥ induced by MOG in splenic T cells in vitro. These data suggest that subcutaneous PLGA-NP-based inverse vaccination may be an effective tool to treat autoimmune diseases.
ICOS and CD28 are expressed by T cells and are involved in costimulation of cytokine production in T helper (TH) cells. ICOS binds B7h expressed by several cell types, whereas CD28 binds B7.1 and B7.2 expressed by activated antigen presenting cells. This work investigated the role of B7h and B7.1 in TH17 and TH9 cell differentiation by assessing activity of recombinant B7h-Fc and B7.1-Fc on human naïve TH cells activated in the presence of different combinations of exogenous cytokines. In the presence of TGF-β1 and IL-1β (TH17 promoting condition), B7h-Fc was more effective than B7.1-Fc in inducing IL-17A and IL-10 secretion, whereas B7.1-Fc was more effective in inducing IL-17F. Dual costimulation with B7h-Fc and B7.1-Fc displayed an intermediate pattern with predominance of IL-17F over IL-17A, secretion of high levels of IL-10, and secretion of IL-9 levels lower than those induced by B7.1-Fc alone. In the presence of TGF-β1 and IL-4 (TH9 promoting condition), B7h-Fc induced IL-17A only, whereas B7.1-Fc induced also IL-17F, IL-10, and high levels of IL-9. Experiments on memory TH cells showed that B7h-Fc mainly supported secretion of IL-17A and IL-10, whereas B7.1-Fc supported secretion of IL-17A, IL-17F, IL-10, and IL-9. These data indicate that B7h and B7.1 play different roles in modulation of TH17 and TH9 differentiation. This plasticity might be important in the immune response to pathogens and tumors, and in the development of autoimmune diseases, and should be taken in consideration in designing of immunotherapeutic protocols triggering ICOS or CD28.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.