Biosensors based on magneto-impedance (MI) effect are powerful tools for biomedical applications as they are highly sensitive, stable, exhibit fast response, small in size, and have low hysteresis and power consumption. However, the performance of these biosensors is influenced by a variety of factors, including the design, geometry, materials and fabrication procedures. Other less appreciated factors influencing the MI effect include measuring circuit implementation, the material used for construction, geometry of the thin film sensing element, and patterning shapes compatible with the interface microelectronic circuitry. The type magnetic (ferrofluid, Dynabeads, and nanoparticles) and size of the particles, the magnetic particle concentration, magnetic field strength and stray magnetic fields can also affect the sensor sensitivity. Based on these considerations it is proposed that ideal MI biosensor sensitivity could be achieved when the sensor is constructed in sandwich thick magnetic layers with large sensing area in a meander shape, measured with circuitry that provides the lowest possible external inductance at high frequencies, enclosed by a protective layer between magnetic particles and sensing element, and perpendicularly magnetized when detecting high-concentration of magnetic particles.
In recent years, many improvements have been made in foodborne pathogen detection methods to reduce the impact of food contamination. Several rapid methods have been developed with biosensor devices to improve the way of performing pathogen detection. This paper presents an automated endpoint detection system for amplicons generated by loop mediated isothermal amplification (LAMP) on a microfluidic compact disk platform. The developed detection system utilizes a monochromatic ultraviolet (UV) emitter for excitation of fluorescent labeled LAMP amplicons and a color sensor to detect the emitted florescence from target. Then it processes the sensor output and displays the detection results on liquid crystal display (LCD). The sensitivity test has been performed with detection limit up to 2.5 × 10−3 ng/µL with different DNA concentrations of Salmonella bacteria. This system allows a rapid and automatic endpoint detection which could lead to the development of a point-of-care diagnosis device for foodborne pathogens detection in a resource-limited environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.