The increasing number of emerging infectious disease events that have spread internationally, such as severe acute respiratory syndrome (SARS)
Free or low-cost sources of unstructured information, such as Internet news and online discussion sites, provide detailed local and near real-time data on disease outbreaks, even in countries that lack traditional public health surveillance. To improve public health surveillance and, ultimately, interventions, we examined 3 primary systems that process event-based outbreak information: Global Public Health Intelligence Network, HealthMap, and EpiSPIDER. Despite similarities among them, these systems are highly complementary because they monitor different data types, rely on varying levels of automation and human analysis, and distribute distinct information. Future development should focus on linking these systems more closely to public health practitioners in the fi eld and establishing collaborative networks for alert verifi cation and dissemination. Such development would further establish event-based monitoring as an invaluable public health resource that provides critical context and an alternative to traditional indicator-based outbreak reporting.
The objective of Web-based expert epidemic intelligence systems is to detect health threats. The Global Health Security Initiative (GHSI) Early Alerting and Reporting (EAR) project was launched to assess the feasibility and opportunity for pooling epidemic intelligence data from seven expert systems. EAR participants completed a qualitative survey to document epidemic intelligence strategies and to assess perceptions regarding the systems performance. Timeliness and sensitivity were rated highly illustrating the value of the systems for epidemic intelligence. Weaknesses identified included representativeness, completeness and flexibility. These findings were corroborated by the quantitative analysis performed on signals potentially related to influenza A/H5N1 events occurring in March 2010. For the six systems for which this information was available, the detection rate ranged from 31% to 38%, and increased to 72% when considering the virtual combined system. The effective positive predictive values ranged from 3% to 24% and F1-scores ranged from 6% to 27%. System sensitivity ranged from 38% to 72%. An average difference of 23% was observed between the sensitivities calculated for human cases and epizootics, underlining the difficulties in developing an efficient algorithm for a single pathology. However, the sensitivity increased to 93% when the virtual combined system was considered, clearly illustrating complementarities between individual systems. The average delay between the detection of A/H5N1 events by the systems and their official reporting by WHO or OIE was 10.2 days (95% CI: 6.7–13.8). This work illustrates the diversity in implemented epidemic intelligence activities, differences in system's designs, and the potential added values and opportunities for synergy between systems, between users and between systems and users.
Background: Globalization and the potential for rapid spread of emerging infectious diseases have heightened the need for ongoing surveillance and early detection. The Global Public Health Intelligence Network (GPHIN) was established to increase situational awareness and capacity for the early detection of emerging public health events.Objective: To describe how the GPHIN has used Big Data as an effective early detection technique for infectious disease outbreaks worldwide and to identify potential future directions for the GPHIN.Findings: Every day the GPHIN analyzes over more than 20,000 online news reports (over 30,000 sources) in nine languages worldwide. A web-based program aggregates data based on an algorithm that provides potential signals of emerging public health events which are then reviewed by a multilingual, multidisciplinary team. An alert is sent out if a potential risk is identified. This process proved useful during the Severe Acute Respiratory Syndrome (SARS) outbreak and was adopted shortly after by a number of countries to meet new International Health Regulations that require each country to have the capacity for early detection and reporting. The GPHIN identified the early SARS outbreak in China, was credited with the first alert on MERS-CoV and has played a significant role in the monitoring of the Ebola outbreak in West Africa. Future developments are being considered to advance the GPHIN's capacity in light of other Big Data sources such as social media and its analytical capacity in terms of algorithm development. Conclusion:The GPHIN's early adoption of Big Data has increased global capacity to detect international infectious disease outbreaks and other public health events. Integration of additional Big Data sources and advances in analytical capacity could further strengthen the GPHIN's capability for timely detection and early warning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.