Because electricity is the core of our daily lives, no one denies the massive progress we have reached thanks to such a fossil fuel-based technology. But at the same time, these advancements have costly affected our environment. Consequently, recent trends towards restructuring the electrical grids in a way intended to be more monitored, secured and environmental are brought to the forefront of the scientific research. The attempts of reconfiguring the electric power grids were coined as "smart grid". Basically, the internet, ZigBee, wireless mesh networks, WiMax, 3G, 4G, WiFi and Bluetooth are among the common communication technologies to be adopted in the framework of these smart grids alongside many emergent new technologies like the Microgrids, virtual power plants (VPPs), distributed intelligence techniques, smart metering infrastructure and demand response technology as well as distributed and renewable energy resources are conceived to make our electricity more resilient to attacks and natural disasters. As a result, the security side has become one of the major and critical associated issues. Much attention has been devoted to this domain; so, this paper aims at reviewing some of the potential attacks, threats, vulnerabilities as well as some proposed solutions to reinforce the smart grid's efficiency and reliability.
Recently, more and more mobile devices have been connected to the Internet. The Internet environment is complicated, and network security incidents emerge endlessly. Traditional blocking and killing passive defense measures cannot fundamentally meet the network security requirements. Inspired by the heuristic establishment of multiple lines of defense in immunology, we designed and prototyped a Double Defense strategy with Endogenous Safety and Security (DDESS) based on multi-identifier network (MIN) architecture. DDESS adopts the idea of a zero-trust network, with identity authentication as the core for access control, which solves security problems of traditional IP networks. In addition, DDESS achieves individual static security defense through encryption and decryption, consortium blockchain, trusted computing whitelist, and remote attestation strategies. At the same time, with the dynamic collection of data traffic and access logs, as well as the understanding and prediction of the situation, DDESS can realize the situation awareness of network security and the cultivation of immune vaccines against unknown network attacks, thus achieving the active herd defense of network security.
Decentralized cryptocurrency systems, known as blockchains, have shown promise as an infrastructure for mutually distrustful parties to securely agree on transactions. Nevertheless, blockchain systems are constrained by the CAP Trilemma. Due to performance degradation, it is impossible to address this issue by improving simply the consensus layer or the network layer. To alleviate the CAP constraint in consortium blockchains, we propose a topological construction method to optimize the physical layer based on multi‐dimensional hypercubes with excellent partition tolerance in probability. The basic topology has the advantage of solving the mismatch problem between the overlay network and the underlying network. It is further extended to hierarchical recursive topologies with more intermediate links or short links to balance the reliability requirement with the cost of building the physical network. We prove that the proposed hypercube topology has better partition tolerance than the regular rooted tree and ring lattice topologies, and effectively fits the upper‐layer protocols at the consensus and network layers. As a result, combined with suitable transmission and consensus protocols that satisfy strong consistency and availability, the proposed topology‐constructed blockchain can reach the CAP guarantee bound.
Decentralized cryptocurrency systems, known as blockchains, have shown promise as an infrastructure for mutually distrustful parties to securely agree on transactions. Nevertheless, blockchain systems are constrained by the CAP Trilemma. Due to performance degradation, it is impossible to address this issue by improving simply the consensus layer or the network layer. To alleviate the CAP constraint in consortium blockchains, we propose a topological construction method to optimize the physical layer based on multi-dimensional hypercubes with excellent partition tolerance in probability. The basic topology has the advantage of solving the mismatch problem between the overlay network and the underlying network. It is further extended to hierarchical recursive topologies with more intermediate links or short links to balance the reliability requirement with the cost of building the physical network. We prove that the proposed hypercube topology has better partition tolerance than the regular rooted tree and ring lattice topologies, and effectively fits the upper-layer protocols at the consensus and network layers. As a result, combined with suitable transmission and consensus protocols that satisfy strong consistency and availability, the proposed topology-constructed blockchain can reach the CAP guarantee bound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.