Microplastics (MPs), act as vectors of heavy metal pollutants in the environment, is of practical significance to study the adsorption process and mechanism on heavy metals. In this study, polystyrene microplastics (PSMPs) were used as model MPs to study the adsorption of Pb2+ on PSMPs and the effects of humic acid (HA) on the adsorption process. The results showed that HA promoted the adsorption of Pb2+ on PSMPs, and the higher the concentration of HA, the greater the adsorption of Pb2+. With the increase of pH value and decrease of ionic strength, the adsorption capacity of PSMPs for Pb2+ increased. The scanning electron microscope equipped with the energy dispersive spectroscope (SEM–EDS), fourier transform-infrared spectra (FT-IR) and X-ray photoelectron spectroscopy (XPS) analysis showed that Pb2+ could be adsorbed directly onto PSMPs and also indirectly by HA. The higher KSV values in the PSMPs-HA-Pb2+ system than PSMPs-HA system by fluorescence analysis of HA suggested that HA acted as a bridging role in the adsorption of Pb2+ on PSMPs. The site energy distribution analysis further revealed that HA increased the average site energy μ(E*) and its standard deviation σe* of PSMPs by introducing more adsorption sites, thus enhanced the adsorption affinity of PSMPs. This study provided more thoughts and insights into the adsorption behavior and mechanism of MPs for Pb2+ in aquatic environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.