Accurate characterization of seismic properties in the prediction of P-wave and S-wave velocities through carbonate reservoirs is necessary due to their intrinsic heterogeneity. Moreover, both the waves velocities mentioned above are applied to the uncertainty analysis as well as the complexity investigation presented in the carbonate reservoirs. In this study, three wells of an Iranian oil field which its formation is the upper part of the Sarvak (Mishrif) has been studied. In accordance with the petrophysical interpretation of this oil field using Geo-log software, a rock physics model has been constructed based on Xu-Payne model (2009) using Hampson-Russel software to predict the elastic properties like P-wave and S-wave velocities as well as density. In the following, some synthetic seismic traces have been created based on the rock physics model using Hampson-Russel software to obtain the correlation coefficients of the seismic data with both the predicted and measured elastic properties. As results, the obtained correlation coefficients show that the predicted elastic properties by the rock physics model have higher quality than the measured elastic properties. In addition, the correlation coefficients of the predicted elastic properties in the well number 1, 2, and 3 have approximately increased by 19.6, 21.3, and 18.2 percent, respectively, in comparison to the correlation coefficients of the measured elastic properties. Therefore, the predicted elastic properties can be replaced with the low-quality measured elastic properties. Eventually, some templates have been created to accurate characterization the carbonate reservoir based on the rock physics model and also show the high-quality correlations between the rock physics model and the measured data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.