In this paper, a cable-driven hyper-redundant manipulator using leader-follower control is explored. The proposed system is being developed for the purpose of exploration and inspection of highly confined spaces. Using a tele-operated joystick, an operator will have direct control over the end-effector, which will determine the trajectory and motion of the robotic system through the leader-follower control. To develop a control system for the manipulator, the kinematic relationships between the cables, motors and joints were firstly explored. Based on these relationships the system is modelled mathematically from the user to the robot end-effector. Using the kinematic equations, a control system was developed in MATLAB simulink. A prototype was developed to measure and validate kinematic relationships between the cables and joints of the system. An Error detection and correction mechanism is implemented using proportional control, validating the Kp value using the prototype system. To verify the kinematics and the proposed control system, a simulation was conducted using the MATLAB robotic toolbox. The simulation result demonstrated the promising capability of the proposed leader-follower control system in controlling the robot motion and its trajectory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.