There are many results proved using the Axiom of Choice. Using point-free topology, we can prove some of these results without using this axiom. B. Banaschewski in [Pointfree Topology and the Spectra of f-rings, Ordered algebraic structures (Curacoa, 1995), Kluwer, Dordrecht, 123-148], studying the spectra of f-rings, describes the point-free version of the classical Gelfand duality without using the Axiom of Choice In this paper, referring to [Ebrahimi, M. M., Karimi Feizabadi, A. and Mahmoudi, M.: Pointfree Spectra of Riesz Space, Appl. Categ. Struct. 12 (2004), 397-409; Ebrahimi, M. M. and Karimi Feizabadi, A.: Pointfree Spectra of '-Modules, To appear in J. Pure Appl. Algebra], we describe a point-free version of the classical Kakutani duality. For this, using one of the spectra given in [Ebrahimi, M. M., Karimi Feizabadi, A. and Mahmoudi, M.: Pointfree Spectra of Riesz Space, Appl. Categ. Struct. 12 (2004), 397-409; Ebrahimi, M. M. and Karimi Feizabadi, A.: Pointfree Spectra of l-Modules, To appear in J. Pure Appl. Algebra], we find an adjunction between the category of compact completely regular frames with frame maps and the category of Archimedean bounded Riesz spaces with continuous Riesz maps. Mathematics Subject Classification (2000): 06D22, 46A40, 46B40, 46B42, 03E25, 03E99.