Extracellular polymeric substances (EPSs) are the hydrated gelatinous matrix produced by microorganisms for attachment in a biofilm environment. In this study, the compositional variation between EPSs of three marine biofilm bacteria (Pseudoalteromonas shioyasakiensis, Vibrio harveyi and Planomicrobium sp.) were analysed by GC-MS, 1H NMR, FT-IR and XRD and SEM. The ecological significance of exopolymers was assessed in vivo using marine model organism barnacle larvae for their settlement-inducing activity. Chemical analysis revealed the presence of glycan fucosylated oligosaccharides, tetraose, trisaccharides, iso-B-Pentasaccharides, sialyllactose, oligomannose, galacto-N-biose, difucosyl-para-lacto-N-neohexaose, 3′-sialyl N-acetyllactosamine and isoglobotriaose-β-N(Acetyl)-Propargyl in all extracted EPSs. Bioassay results indicated that treatment of the barnacle larvae with EPSs from three bacterial strains enhanced settlement on substrates. In conclusion, this study highlighted the role of water-soluble EPSs in the invertebrate larval settlement on artificial materials.
Surface physical properties, hydrodynamics, biochemical cues, orientation and temporal scales play an important role in invertebrate larval recruitment on artificial substrates. In the present study, invertebrate recruitment on four different substrates (acrylic, stainless steel, ceramic and concrete panels) was investigated in two different orientations (vertical and horizontal) in the central Red Sea. Results showed significant variations in the abundance of benthic invertebrates between the different substrates. While barnacles and bivalves preferred panels placed in vertical positions, the abundance of bryozoans was high on horizontal panels. Artificial panel submersion season plays a significant role in the recruitment of benthic invertebrates on surfaces in the Red Sea. In conclusion, this study supports the overall notion that marine invertebrate recruitment on hard substrates is regulated by a combination of factors which include substrate type, orientation and submersion season.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.