Ensemble models achieve high accuracy by combining a number of base estimators and can increase the reliability of machine learning compared to a single estimator. Additionally, an ensemble model enables a machine learning method to deal with imbalanced data, which is considered to be one of the most challenging problems in machine learning. In this paper, the capability of Adaptive Boosting (AdaBoost) is integrated with a Convolutional Neural Network (CNN) to design a new machine learning method, AdaBoost-CNN, which can deal with large imbalanced datasets with high accuracy. AdaBoost is an ensemble method where a sequence of classifiers is trained. In AdaBoost, each training sample is assigned a weight, and a higher weight is set for a training sample that has not been trained by the previous classifier. The proposed AdaBoost-CNN is designed to reduce the computational cost of the classical AdaBoost when dealing with large sets of training data, through reducing the required number of learning epochs for its ingredient estimator. AdaBoost-CNN applies transfer learning to sequentially transfer the trained knowledge of a CNN estimator to the next CNN estimator, while updating the weights of the samples in the training set to improve accuracy and to reduce training time. Experimental results revealed that the proposed AdaBoost-CNN achieved 16.98% higher accuracy compared to the classical AdaBoost method on a synthetic imbalanced dataset. Additionally, AdaBoost-CNN reached an accuracy of 94.08% on 10,000 testing samples of the synthetic imbalanced dataset, which is higher than the accuracy of the baseline CNN method, i.e. 92.05%. AdaBoost-CNN is computationally efficient, as evidenced by the fact that the training simulation time of the proposed method is 47.33 seconds, which is lower than the training simulation time required for a similar AdaBoost method without transfer learning, i.e. 225.83 seconds on the imbalanced dataset. Moreover, when compared to the baseline CNN, AdaBoost-CNN achieved higher accuracy when applied to five other benchmark datasets including CIFAR-10 and Fashion-MNIST. AdaBoost-CNN was also applied to the EMNIST datasets, to determine its impact on large imbalanced classes, and the results demonstrate the superiority of the proposed method compared to CNN.
Recent research has shown the potential capability of spiking neural networks (SNNs) to model complex information processing in the brain. There is biological evidence to prove the use of the precise timing of spikes for information coding. However, the exact learning mechanism in which the neuron is trained to fire at precise times remains an open problem. The majority of the existing learning methods for SNNs are based on weight adjustment. However, there is also biological evidence that the synaptic delay is not constant. In this paper, a learning method for spiking neurons, called delay learning remote supervised method (DL-ReSuMe), is proposed to merge the delay shift approach and ReSuMe-based weight adjustment to enhance the learning performance. DL-ReSuMe uses more biologically plausible properties, such as delay learning, and needs less weight adjustment than ReSuMe. Simulation results have shown that the proposed DL-ReSuMe approach achieves learning accuracy and learning speed improvements compared with ReSuMe.
There is a biological evidence to prove information is coded through precise timing of spikes in the brain. However, training a population of spiking neurons in a multilayer network to fire at multiple precise times remains a challenging task. Delay learning and the effect of a delay on weight learning in a spiking neural network (SNN) have not been investigated thoroughly. This paper proposes a novel biologically plausible supervised learning algorithm for learning precisely timed multiple spikes in a multilayer SNNs. Based on the spike-timing-dependent plasticity learning rule, the proposed learning method trains an SNN through the synergy between weight and delay learning. The weights of the hidden and output neurons are adjusted in parallel. The proposed learning method captures the contribution of synaptic delays to the learning of synaptic weights. Interaction between different layers of the network is realized through biofeedback signals sent by the output neurons. The trained SNN is used for the classification of spatiotemporal input patterns. The proposed learning method also trains the spiking network not to fire spikes at undesired times which contribute to misclassification. Experimental evaluation on benchmark data sets from the UCI machine learning repository shows that the proposed method has comparable results with classical rate-based methods such as deep belief network and the autoencoder models. Moreover, the proposed method can achieve higher classification accuracies than single layer and a similar multilayer SNN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.