Direct numerical simulations (DNS) of the flow in various rotating annular confinements have been conducted to investigate the effects of wall inclination on secondary fluid motions due to an unstable boundary layer. The inner wall resembles a truncated cone (frustum) whose apex half-angle is varied from $18^{\circ }$ to $0^{\circ }$ (straight cylinder). The large inner radius $r_{1}$, the mean rotation rate $\unicode[STIX]{x1D6FA}_{0}$ and the kinematic viscosity $\unicode[STIX]{x1D708}$ were kept constant resulting in the constant Ekman number $E=\unicode[STIX]{x1D708}/(\unicode[STIX]{x1D6FA}_{0}r_{1}^{2})=4\times 10^{-5}$. Flows were excited by time-harmonic modulation of the inner wall’s rotation rate (so-called longitudinal libration) by prescribing the amplitude $\unicode[STIX]{x1D700}\unicode[STIX]{x1D6FA}_{0}$ and the forcing frequency $\unicode[STIX]{x1D714}=\unicode[STIX]{x1D6FA}_{0}$. By steepening the inner wall and hence reducing the effect of the local Coriolis force in the boundary layer three different flow regimes can be realized: a rotation-dominated, a libration-dominated and an intermediate regime. In the present study we focus on the libration-dominated regime. For small libration amplitudes (here $\unicode[STIX]{x1D700}=0.2$), a laminar Ekman–Stokes boundary layer (ESBL) is realized at the librating wall. With the aid of laminar boundary layer theory and DNS we show that the ESBL exhibits an oscillatory mass flux along the librating wall (Ekman property) and an oscillatory azimuthal velocity, which resembles a radially damped wave (Stokes property). For large libration amplitudes (here $\unicode[STIX]{x1D700}=0.8$), the DNS results exhibit an intermittently unstable ESBL, which turns centrifugally unstable during the prograde (faster) part of a libration period. This instability is due to the Stokes property and gives rise to Görtler vortices, which are found to be tilted with respect to the azimuth when the librating wall is at a finite angle relative to the axis of rotation. We show that this tilt is related to the Ekman property of the ESBL. This suggests that linear and nonlinear dynamics are equally important for this intermittent instability. Our DNS results indicate further that the Görtler vortices propagate into the fluid bulk where they generate an azimuthal mean flow. This mean flow is notably different from the mean flow driven in the case of the stable ESBL. A diagnostic analysis of the Reynolds-averaged Navier–Stokes (RANS) equations in the unstable flow regime hints at a competition between the radial and axial turbulent transport terms which act as generating and destructing agents for the azimuthal mean flow, respectively. We show that the balance of both terms depends on the wall inclination, that is, on the wall-tangential component of the Coriolis force.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.