This study characterizes the structure of a plant-pollinator network in a temperate rain forest of Chiloé Island, southern Chile, where woody species are strongly dependent on biotic pollinators, and analyzes its robustness to the loss of participating species. Degree distribution, nestedness, and expected species persistence were evaluated. In addition, we assessed the roles of predefined subsets of plants (classified by life forms) and pollinators (grouped by taxonomic orders) in the network's structure and dynamics. For this, we simulated the complete removal of each plant and pollinator subset and analyzed the resultant connectivity patterns, as well as the expected long-term species losses by running a stochastic model. Finally, we evaluated the sensitivity of the network structure to the loss of single species in order to identify potential targets for conservation. Our results show that the plant-pollinator network of this Chilean temperate rain forest exhibits a nested structure of interactions, with a degree distribution best described by a power law model. Model simulations revealed the importance of trees and hymenopterans as pivotal groups that maintain the core structure of the pollination network and guarantee overall species persistence. The hymenopterans Bombus dahlbomii and Diphaglossa gayi, the shrubs Tepualia stipularis and Ugni molinae, the vines Mitraria coccinea and Asteranthera ovata, and the entire set of tree species exerted a disproportionately large influence on the preservation of network structure and should be considered as focal species for conservation programs given current threats from selective logging and habitat loss.
This study uses phylogeny-based measures of evolutionary potential (phylogenetic diversity and community structure) to evaluate the evolutionary value of vascular plant genera endemic to Chile. Endemicity is regarded as a very important consideration for conservation purposes. Taxa that are endemic to a single country are valuable conservation targets, as their protection depends upon a single government policy. This is especially relevant in developing countries in which conservation is not always a high resource allocation priority. Phylogeny-based measures of evolutionary potential such as phylogenetic diversity (PD) have been regarded as meaningful measures of the “value” of taxa and ecosystems, as they are able to account for the attributes that could allow taxa to recover from environmental changes. Chile is an area of remarkable endemism, harboring a flora that shows the highest number of endemic genera in South America. We studied PD and community structure of this flora using a previously available supertree at the genus level, to which we added DNA sequences of 53 genera endemic to Chile. Using discrepancy values and a null model approach, we decoupled PD from taxon richness, in order to compare their geographic distribution over a one-degree grid. An interesting pattern was observed in which areas to the southwest appear to harbor more PD than expected by their generic richness than those areas to the north of the country. In addition, some southern areas showed more PD than expected by chance, as calculated with the null model approach. Geological history as documented by the study of ancient floras as well as glacial refuges in the coastal range of southern Chile during the quaternary seem to be consistent with the observed pattern, highlighting the importance of this area for conservation purposes.
BackgroundSynchrony among populations has been attributed to three major hypotheses: dispersal, the Moran effect, and trophic-level interactions. Unfortunately, simultaneous testing of these hypotheses demands complete and detailed data, which are scarce for ecological systems.Methodology/Principal FindingsHudson's Bay Company data on mink and muskrat fur returns in Canada represent an excellent opportunity to test these hypotheses because of the detailed spatial and temporal data from this predator-prey system. Using structural equation modelling, support for each hypothesis was evaluated at two spatial scales: across Canada and dividing the country into three regions longitudinally. Our results showed that at both scales mink synchrony is a major factor determining muskrat synchrony, supporting the hypothesis of trophic-level interactions, but the influence of winter precipitation synchrony is also important in eastern Canada. Moreover, mink synchrony is influenced principally by winter precipitation synchrony at the level of all Canada (Moran effect), but by distance at regional level, which might suggest some influence of dispersal at this level.Discussion/SignificanceOur result is one of the few reports of synchrony mediated by trophic-level interactions, highlighting the importance of evaluation of scale effects in population synchrony studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.