Computational catalysts screening is an increasingly popular technique, in which the mechanism from a known good catalyst is commonly adopted, parameterized from linear scaling relationships, and then used in a microkinetic model to identify other metal alloys with incrementally improved activity. This strategy, however, fails to identify truly novel catalysts that operate under nontraditional reaction conditions and exhibit alternative dominant reaction pathways. Using methane oxidation and reforming we investigated a series of O* and OH*‐assisted C‐H scission and C‐O bond formation pathways. Notably, for methane oxidation we discovered a second local optimum for O*‐assisted C‐H bond activation near Ag, which is inactive if only the direct C‐H scission route is considered. In light of the significant qualitative difference in the predicted catalytic trends when parallel mechanisms are allowed, we propose a minimum barrier assumption to rapidly screen for potentially important alternative pathways without the need for costly density functional theory simulations. © 2016 American Institute of Chemical Engineers AIChE J, 63: 66–77, 2017
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.