The financial burden of managing breast cancer is enormous. This financial hardship becomes more worrisome when patients have to pay out of pockets, especially in low income countries where state supports is poor or absent. This study thus determined the extent and effect of the financial hardship in managing metastatic breast cancers in a low income country located in Sub-Saharan African. We prospectively enrolled all newly diagnosed patients with metastatic breast cancers who were gainfully employed or not but could estimate their monthly income. A total of 78 patients were enrolled over a year period. The total cost of managing metastatic breast cancer (MBC) ranged between 31,750 and 122,000 naira (113 and 436 USD) with mean of 58,092 ± 26,944 naira(207± 96 USD) over a month period, while the estimated patient' discretionary monthly income (PDMI) ranged between 2,500 and 41,500 naira (9 and 148 USD) with mean of 13,347 ± 12,425 naira (48 ±44 USD) over a month period which shows a statistical significant difference between the mean estimated PDMI and the mean estimated cost of managing metastatic breast cancer (MBC) over the same period (p<0.001) About 86% of our patients were in financial debts during study. The financial burden of managing metastatic breast cancer is enormous and we suggest the need for screening programmes that will encourage early diagnosis and introduction/extension of health insurance scheme to wider population.
Climate affects the quantity of soil moisture within the surface of the earth and this is obtained by affecting the amount of radon flux density escaping from the land surface. This chapter contains the evaluation of climate change conditions as it affects the variability of soil water for the purpose of estimating the health effects of radon flux density within Ogbomoso metropolis. The simulated soil moisture content around Ogbomoso was done for a period of 34 years using the hydrological model, Soil Water Assessment Tool (SWAT). The calibration and validation of the SWAT model was done using the daily observed soil moisture content. The simulated daily soil moisture within Ogbomoso showed good performance when calibrated and validated. A 20 years prediction of the daily soil moisture content was done using the SWAT model. The estimation of the radon flux density for the study area was obtained using the simulated soil temperature and soil moisture from the SWAT model. In this chapter, the UNSCEAR radon flux formula was used for the radon flux estimate. The result showed that the UNSCEAR radon flux formula performed well in estimating the radon flux density in the study area. The mean value of the radon flux density of 15.09 mBqm−2 s−1 falls below the estimated world average of 33 mBqm−2 s−1 by UNSCEAR stipulated for land surface. The results showed that Ogbomoso region is not prone to high risk of radon exposure to the public. The estimation of the radon flux density value suggested that there is no radiological health hazard such as lung cancer or any other respiratory tract diseases to the inhabitant of Ogbomoso, Nigeria.
Climate affects the quantity of soil moisture within the surface of the earth and this is obtained by affecting the amount of radon flux density escaping from the land surface. This chapter contains the evaluation of climate change conditions as it affects the variability of soil water for the purpose of estimating the health effects of radon flux density within Ogbomoso metropolis. The simulated soil moisture content around Ogbomoso was done for a period of 34 years using the hydrological model, Soil Water Assessment Tool (SWAT). The calibration and validation of the SWAT model was done using the daily observed soil moisture content. The simulated daily soil moisture within Ogbomoso showed good performance when calibrated and validated. A 20 years prediction of the daily soil moisture content was done using the SWAT model. The estimation of the radon flux density for the study area was obtained using the simulated soil temperature and soil moisture from the SWAT model. In this chapter, the UNSCEAR radon flux formula was used for the radon flux estimate. The result showed that the UNSCEAR radon flux formula performed well in estimating the radon flux density in the study area. The mean value of the radon flux density of 15.09 mBqm−2 s−1 falls below the estimated world average of 33 mBqm−2 s−1 by UNSCEAR stipulated for land surface. The results showed that Ogbomoso region is not prone to high risk of radon exposure to the public. The estimation of the radon flux density value suggested that there is no radiological health hazard such as lung cancer or any other respiratory tract diseases to the inhabitant of Ogbomoso, Nigeria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.