Unlike most epithelial cancers, E-cadherin expression is upregulated in ovarian carcinoma effusions compared with corresponding primary tumors. In the present study, we analyzed the anatomic site-specific expression of transcription factors that negatively regulate E-cadherin in ovarian carcinoma. Using reverse-transcription polymerase chain reaction, mRNA in situ hybridization, and Western blotting, we analyzed the expression and localization of the Snail, Slug, and SIP1 transcription factors and E-cadherin in 78 effusions, 41 primary carcinomas, and 15 solid metastases. Slug mRNA and protein expression was highest in metastases (p=0.042 and p<0.001, respectively). Snail mRNA was comparable at all anatomic sites, but higher protein expression was found in primary tumors and solid metastases compared with effusions (p<0.001). SIP1 mRNA expression was higher in effusions (p<0.001) compared to other sites. Confocal microscopy analysis of fresh and cultured cells from effusion specimens revealed cytoplasmic localization of the Snail protein in primary tumor cells, with a nuclear shift following culturing of these cells. In conclusion, E-cadherin and its negative regulators show site-dependent expression in ovarian carcinoma. In solid tumors, E-cadherin is negatively regulated by Snail and Slug. In effusions, SIP1 may be the main regulator of E-cadherin, but with a lesser level of suppression compared with primary tumors and solid metastases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.