Lewy body diseases involve neurogenic orthostatic hypotension (nOH), cardiac noradrenergic deficiency, and deposition of the protein AS (alpha-synuclein) in sympathetic ganglion tissue. Mechanisms linking these abnormalities are poorly understood. One link may be AS deposition
within
sympathetic neurons. We validated methodology to quantify AS colocalization with TH (tyrosine hydroxylase), a marker of sympathetic noradrenergic innervation, and assessed associations of AS/TH colocalization with myocardial norepinephrine content and cardiac sympathetic neuroimaging data in nOH. Postmortem sympathetic ganglionic AS/TH colocalization indices and myocardial norepinephrine contents were measured in 4 Lewy body and 3 rare non-Lewy body nOH patients. Sixteen Lewy body and 11 non-Lewy body nOH patients underwent in vivo skin biopsies and thoracic
18
F-dopamine positron emission tomographic scanning, with cutaneous colocalization indices expressed versus cardiac
18
F-dopamine–derived radioactivity. Ganglionic AS/TH colocalization indices were higher and myocardial norepinephrine lower in Lewy body than non-Lewy body nOH (
P
=0.0020,
P
=0.014). The Lewy body nOH group had higher AS/TH colocalization indices in skin biopsies and lower myocardial
18
F-dopamine–derived radioactivity than did the non-Lewy body nOH group (
P
<0.0001 each). All Lewy body nOH patients had colocalization indices >1.5 in skin biopsies and
18
F-dopamine–derived radioactivity <6000 nCi-kg/cc-mCi, a combination not seen in non-Lewy body nOH patients (
P
<0.0001). In Lewy body nOH, AS deposition in sympathetic noradrenergic nerves is related to postmortem neurochemical and in vivo neuroimaging evidence of myocardial noradrenergic deficiency. These associations raise the possibility that intraneuronal AS deposition plays a pathophysiological role in the myocardial sympathetic neurodegeneration attending Lewy body nOH.
Sympathetic denervation and intraneuronal AS deposition are correlated across CAF syndromes, consistent with a pathogenic contribution of synucleinopathy to cardiac noradrenergic deficiency in Lewy body diseases.
The transcription factor MXD3 is an atypical member of the MYC/MAX/MXD transcriptional network and has been previously shown to be an important regulator of cell proliferation. MXD3 has been shown to be overexpressed and to be required for medulloblastoma and acute lymphoblastic leukemia cell proliferation. In this study we leveraged datasets from The Cancer Genome Atlas to examine MXD3 across several cancers. We find that MXD3 transcripts are significantly overexpressed in ~72% of the available datasets. The gene itself is not frequently altered, while the promoter appears to be hypomethylated. We examine the possibility that aberrant regulation of the MXD3 message is the cause of abnormal MXD3 expression across cancers. Specifically, we looked at MXD3 alternative splicing in glioblastoma multiforme (GBM) and find notable functional differences between the splice variants. The 3′UTR confers differential message stability. Furthermore, the different coding sequences lead to different protein stabilities and localizations. Altogether, these data extend our knowledge of MXD3 in the context of human cancers while characterizing a previously unstudied splice variant of MXD3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.