Local drug delivery preferentially loads target tissues with a concentration gradient from the surface or point of release that tapers down to more distant sites. Drug that diffuses down this gradient must be in unbound form, but such drug can only elicit a biologic effect through receptor interactions. Drug excess loads tissues, increasing gradients and driving penetration, but with limited added biological response. We examined the hypothesis that local application reduces dramatically systemic circulating drug levels but leads to significantly higher tissue drug concentration than might be needed with systemic infusion in a rat model of local epicardial inotropic therapy. Epinephrine was infused systemically or released locally to the anterior wall of the heart using a novel polymeric platform that provides steady, sustained release over a range of precise doses. Epinephrine tissue concentration, upregulation of cAMP, and global left ventricular response were measured at equivalent doses and at doses equally effective in raising indices of contractility. The contractile stimulation by epinephrine was linked to drug tissue levels and commensurate cAMP upregulation for IV systemic infusion, but not with local epicardial delivery. Though cAMP was a powerful predictor of contractility with local application, tissue epinephrine levels were high and variable - only a small fraction of the deposited epinephrine was utilized in second messenger signaling and biologic effect. The remainder of deposited drug was likely used in diffusive transport and distribution. Systemic side effects were far more profound with IV infusion which, though it increased contractility, also induced tachycardia and loss of systemic vascular resistance, which were not seen with local application. Local epicardial inotropic delivery illustrates then a paradigm of how target tissues differentially handle and utilize drug compared to systemic infusion.
Local myocardial application of inotropes may allow the study of pharmacologically augmented central myocardial contraction in the absence of confounding peripheral vasodilating effects and alterations in heart loading conditions. Novel alginate epicardial (EC) drug releasing platforms were used to deliver dobutamine to the left ventricle of rats. Pressure volume analyses indicated that while both local and systemic (IV) use of inotropic drugs increase stroke volume and contractility, systemic infusion does so through heart unloading. Conversely, EC application preserves heart load and systemic blood pressure. Epicardial dobutamine increased indices of contractility with less rise in heart rate and lower reduction in systemic vascular resistance than IV infusion. Drug sampling showed that dobutamine concentration was 650-fold higher in the anterior wall than in the inferior wall The plasma dobutamine concentration with local delivery was about half as much as with systemic infusion. These data suggest that inotropic EC delivery has a localized effect and augments myocardial contraction by different mechanisms than systemic infusion, with far fewer side effects. These studies demonstrate a pharmacologic paradigm that may improve heart function without interference from effects on the vasculature, alterations in heart loading and may ultimately improve the health of heart failure patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.