BackgroundNeural stem cells are currently being investigated as potential therapies for neurodegenerative diseases, stroke, and trauma. However, concerns have been raised over the safety of this experimental therapeutic approach, including, for example, whether there is the potential for tumors to develop from transplanted stem cells.Methods and FindingsA boy with ataxia telangiectasia (AT) was treated with intracerebellar and intrathecal injection of human fetal neural stem cells. Four years after the first treatment he was diagnosed with a multifocal brain tumor. The biopsied tumor was diagnosed as a glioneuronal neoplasm. We compared the tumor cells and the patient's peripheral blood cells by fluorescent in situ hybridization using X and Y chromosome probes, by PCR for the amelogenin gene X- and Y-specific alleles, by MassArray for the ATM patient specific mutation and for several SNPs, by PCR for polymorphic microsatellites, and by human leukocyte antigen (HLA) typing. Molecular and cytogenetic studies showed that the tumor was of nonhost origin suggesting it was derived from the transplanted neural stem cells. Microsatellite and HLA analysis demonstrated that the tumor is derived from at least two donors.ConclusionsThis is the first report of a human brain tumor complicating neural stem cell therapy. The findings here suggest that neuronal stem/progenitor cells may be involved in gliomagenesis and provide the first example of a donor-derived brain tumor. Further work is urgently needed to assess the safety of these therapies.
A review of the English language literature revealed 390 well-documented cases of metastatic lesions to the jawbones. Most metastatic lesions were diagnosed in patients in their fifth to seventh decade. The primary site differed between the genders: for women, it was the breast followed by the adrenal, colo-rectum, female genital organs and thyroid; for men, it was the lung, followed by the prostate, kidney, bone and adrenal. The most common location of the metastatic tumors was the mandible, with the molar area the most frequent site involved. In about 30% of cases the oral lesion was the first sign of the malignant disease. The present data are compared with those of metastatic tumors to the oral mucosa and a view on the possible pathogenesis is presented.
Polarization colors of various purified collagens were studied in fibers of similar thickness. Three different soluble collagens of type I, insoluble collagen type I, lathyritic collagen type I, two p-N-collagens type I, pepsin extract collagen type II, two soluble collagens type III, p-N-collagen type III, and soluble collagen type V were submitted to a routine histopathologic procedure of fixation, preparation of 5-microns-thick sections, staining with Picrosirius red and examination under crossed polars. Polarization colors were determined for thin fibers (0.8 micron or less) an thick fibers, (1.6-2.4 microns). Most thin fibers of collagens and p-N-collagens showed green to yellowish-green polarization colors with no marked differences between the various samples. Thick fibers of all p-N-collagens, lathyritic and normal 0.15 M NaCl-soluble collagens showed green to greenish-yellow polarization colors, while in all other collagens, polarization colors of longer wavelengths (from yellowish-orange to red) were observed. These data suggested that fiber thickness was not the only factor involved in determining the polarization colors of Picrosirius red-stained collagens. Tightly packed and presumably, better aligned collagen molecules showed polarization colors of longer wavelengths. Thus, packing of collagen molecules and not only fiber thickness plays a role in the pattern of polarization colors of Picrosirius red-stained collagens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.